42 research outputs found

    Vorticity-transport and unstructured RANS investigation of rotor-fuselage interactions

    Get PDF
    The prediction capabilities of unstructured primitive-variable and vorticity-transport-based Navier-Stokes solvers have been compared for rotorcraft-fuselage interaction. Their accuracies have been assessed using the NASA Langley ROBIN series of experiments. Correlation of steady pressure on the isolated fuselage delineates the differences between the viscous and inviscid solvers. The influence of the individual blade passage, model supports, and viscous effects on the unsteady pressure loading has been studied. Smoke visualization from the ROBIN experiment has been used to determine the ability of the codes to predict the wake geometry. The two computational methods are observed to provide similar results within the context of their physical assumptions and simplifications in the test configuration

    Numerical Investigation and Optimization of a Flushwall Injector for Scramjet Applications at Hypervelocity Flow Conditions

    Get PDF
    An investigation utilizing Reynolds-averaged simulations (RAS) was performed in order to demonstrate the use of design and analysis of computer experiments (DACE) methods in Sandias DAKOTA software package for surrogate modeling and optimization. These methods were applied to a flow- path fueled with an interdigitated flushwall injector suitable for scramjet applications at hyper- velocity conditions and ascending along a constant dynamic pressure flight trajectory. The flight Mach number, duct height, spanwise width, and injection angle were the design variables selected to maximize two objective functions: the thrust potential and combustion efficiency. Because the RAS of this case are computationally expensive, surrogate models are used for optimization. To build a surrogate model a RAS database is created. The sequence of the design variables comprising the database were generated using a Latin hypercube sampling (LHS) method. A methodology was also developed to automatically build geometries and generate structured grids for each design point. The ensuing RAS analysis generated the simulation database from which the two objective functions were computed using a one-dimensionalization (1D) of the three-dimensional simulation data. The data were fitted using four surrogate models: an artificial neural network (ANN), a cubic polynomial, a quadratic polynomial, and a Kriging model. Variance-based decomposition showed that both objective functions were primarily driven by changes in the duct height. Multiobjective design optimization was performed for all four surrogate models via a genetic algorithm method. Optimal solutions were obtained at the upper and lower bounds of the flight Mach number range. The Kriging model predicted an optimal solution set that exhibited high values for both objective functions. Additionally, three challenge points were selected to assess the designs on the Pareto fronts. Further sampling among the designs of the Pareto fronts may be required to lower the surrogate model errors and perform more accurate surrogate-model-based optimization

    Numerical Investigation and Optimization of a Flushwall Injector for Scramjet Applications at Hypervelocity Flow Conditions

    Get PDF
    An investigation utilizing Reynolds-averaged simulations (RAS) was performed in order to find optimal designs for an interdigitated flushwall injector suitable for scramjet applications at hypervelocity conditions. The flight Mach number, duct height, spanwise width, and injection angle were the design variables selected to maximize two objective functions: the thrust potential and combustion efficiency. A Latin hypercube sampling design-of-experiments method was used to select design points for RAS. A methodology was developed that automated building geometries and generating grids for each design. The ensuing RAS analysis generated the performance database from which the two objective functions of interest were computed using a one-dimensional performance utility. The data were fitted using four surrogate models: an artificial neural network (ANN) model, a cubic polynomial, a quadratic polynomial, and a Kriging model. Variance-based decomposition showed that both objective functions were primarily driven by changes in the duct height. Multiobjective design optimization was performed for all four surrogate models via a genetic algorithm method. Optimal solutions were obtained at the upper and lower bounds of the flight Mach number range. The Kriging model obtained an optimal solution set that predicted high values for both objective functions. Additionally, three challenge points were selected to assess the designs on the Pareto fronts. Further sampling among the designs of the Pareto fronts are required in order to lower the errors and perform more accurate surrogate-based optimization. sed optimization

    Comparison of Mixing Characteristics for Several Fuel Injectors at Mach 8, 12, and 15 Hypervelocity Flow Conditions

    Get PDF
    CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at flight Mach numbers of 8, 12, and 15. The Reynolds-averaged simulations (RAS) were carried out using the VULCAN-CFD solver. The high Mach number flow conditions match those of the experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies relevant to flight Mach numbers greater than 8. The injectors include a fuel placement device, a strut, and a fluidic vortical mixer, a ramp. These fuel injectors accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow, albeit via different strategies. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor. The three injectors represent the baseline configurations of the EIMP experiments. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are computed from the RAS and compared for the three flight conditions and injector configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations. Plotting the total pressure recovery and thrust potential as a function of mixing efficiency provides added insight into critical aspects of combustor performance as the flight condition and injector type are varied

    Comparison of Mixing Characteristics for Several Fuel Injectors on an Open Plate and in a Ducted Flowpath Configuration at Hypervelocity Flow Conditions

    Get PDF
    In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Higher risk of short term COVID-19 vaccine adverse events in myositis patients with autoimmune comorbidities: results from the COVAD study

    No full text

    Higher risk of short term COVID-19 vaccine adverse events in myositis patients with autoimmune comorbidities: results from the COVAD study

    No full text
    corecore