52 research outputs found

    A Lightweight Hash Function Resisting Birthday Attack and Meet-in-the-middle Attack

    Get PDF
    To examine the integrity and authenticity of an IP address efficiently and economically, this paper proposes a new non-Merkle-Damgard structural (non-MDS) hash function called JUNA that is based on a multivariate permutation problem and an anomalous subset product problem to which no subexponential time solutions are found so far. JUNA includes an initialization algorithm and a compression algorithm, and converts a short message of n bits which is regarded as only one block into a digest of m bits, where 80 <= m <= 232 and 80 <= m <= n <= 4096. The analysis and proof show that the new hash is one-way, weakly collision-free, and strongly collision-free, and its security against existent attacks such as birthday attack and meet-in-the- middle attack is to O(2 ^ m). Moreover, a detailed proof that the new hash function is resistant to the birthday attack is given. Compared with the Chaum-Heijst-Pfitzmann hash based on a discrete logarithm problem, the new hash is lightweight, and thus it opens a door to convenience for utilization of lightweight digital signing schemes

    A Kind of New Surface Modeling Method Based on DEM Data

    Get PDF
    Surface elevation changes greatly in the river erosion area. Due to the limitation of the acquisition equipment and cost, the traditional seismic acquisition data has sparse physical points both horizontally and longitudinally, the density of surface measurement data is not enough to survey the surface structure in detail. With the development of science and technology, and the application of satellite technology, the DEM elevation data obtained from the geographic information system (GIS) are becoming more and more accurate. In this paper, a precise modeling is performed on the surface based on the geographic information from the river erosion area and combined with the results of the surface survey control points, a good effect is achieved.Key words: River erosion area; Geographic information; Similarity coefficient; Kriging interpolation; Surface modeling; High and low frequency static

    A Public Key Cryptoscheme Using Bit-pair Shadows

    Get PDF
    This paper gives the definition and property of a bit-pair shadow, and devises the three algorithms of a public key cryptoscheme called JUOAN that is based on a multivariate permutation problem and an anomalous subset product problem to which no subexponential time solutions are found so far, and regards a bit-pair as a manipulation unit. The authors demonstrate that the decryption algorithm is correct, deduce the probability that a plaintext solution is nonunique is nearly zero, analyze the security of the new cryptoscheme against extracting a private key from a public key and recovering a plaintext from a ciphertext on the assumption that an integer factorization problem, a discrete logarithm problem, and a low-density subset sum problem can be solved efficiently, and prove that the new cryptoscheme using random padding and random permutation is semantically secure. The analysis shows that the bit-pair method increases the density D of a related knapsack to a number more than 1, and decreases the modulus length lgM of the new cryptoscheme to 464, 544, or 640

    Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration

    Get PDF
    This work was funded by National Basic Research Program of China (2014CB953800), Young Talents Projects of the Institute of Urban Environment, Chinese Academy of Sciences (IUEMS201402), National Natural Science Foundation of China (41471190, 41301237, 71704171), China Postdoctoral Science Foundation (2014T70144) and Discovery Early Career Researcher Award of the Australian Research Council (DE170100423). The work contributes to the UK-China Virtual Joint Centres on Nitrogen ā€œN-Circleā€ and ā€œCINAgā€ funded by the Newton Fund via UK BBSRC/NERC (grants BB/N013484/1 and BB/N013468/1, respectively).Peer reviewedPostprintPostprin
    • ā€¦
    corecore