
> http://eprint.iacr.org/2013/327.pdf <

A Lightweight Hash Function Resisting Birthday Attack and
Meet-in-the-middle Attack *

Shenghui Su 1, 2(), Tao Xie 2, and Shuwang Lü 3, 4

1 Laboratory of Trusted Computing, Beijing University of Technology, Beijing 100124, PRC
2 School of Computers, National University of Defense Technology, Changsha 410073, PRC

3 School of Computers, University of Chinese Academy of Sciences, Beijing 100039, PRC
4 Laboratory of Computational Complexity, BFID Corporation, Beijing 100098, PRC

Abstract. To examine the integrity and authenticity of an IP address efficiently and economically,
this paper proposes a new non-Merkle-Damgård structural (non-MDS) hash function called JUNA
that is based on a multivariate permutation problem and an anomalous subset product problem to
which no subexponential time solutions are found so far. JUNA includes an initialization algorithm
and a compression algorithm, and converts a short message of n bits which is regarded as only one
block into a digest of m bits, where 80  m  232 and 80  m  n  4096. The analysis and
proof show that the new hash is one-way, weakly collision-free, and strongly collision-free, and its
security against existent attacks such as birthday attack and meet-in-the- middle attack is to O(2m).
Moreover, a detailed proof that the new hash function is resistant to the birthday attack is given.
Compared with the Chaum-Heijst-Pfitzmann hash based on a discrete logarithm problem, the new
hash is lightweight, and thus it opens a door to convenience for utilization of lightweight digital
signing schemes.

Keywords: Hash function; Compression algorithm; Non-iterative structure; Provable security;
Birthday attack; Meet-in-the- middle attack

1 Introduction

In recent years, the ECC-160 digital signing scheme, an analogue of the ElGamal digital signing
scheme based on a discrete logarithm problem (DLP) in an elliptic curve group over a finite field, and
some lightweight digital signing schemes have been utilized for RF (Radio Frequency) identity tags or
non-RF identity tags. A RF identity tag contains an IC chip which is used to store signatures and other
data, while a non-RF identity tag contains no IC chip because a signature by a lightweight or
ultra-lightweight signing scheme may be converted into a short visual string less than 22 characters,
and printed directly on a papery tag or label. In the near future, such non-RF tags will be applied to the
identification, authentication, or anti-forgery of financial notes, bills, certificates, diplomas, and
commodities, particularly including foods and drugs.

Additionally, message digests outputted by a hash function may be utilized to examine the integrity
and authenticity of IP addresses in a transmitted data packet so as to prevent the source address and
destination address from being tampered or forged.

It is well understood that we first need to extract the digest of a message by employing a hash
function before signing the message [1][2][3]. Traditionally, a hash function consists of a compression
function and the Merkle-Damgård iterative structure [4][5]. Let ĥ be a hash function, and usually, it has
the four properties as follows:
 given a message , it is very easy to calculate the message digest ḏ = ĥ (), where ḏ is also called

a hash output, namely ĥ is computable;
 given a digest ḏ, it is very hard to calculate the message  according to ḏ = ĥ (), namely ĥ is

one-way;
 given any arbitrary message , it is computationally infeasible to find another message ′ such

that ĥ() = ĥ(′), namely ĥ is weakly collision-free;

* This work is supported by MOST with Project 2009AA01Z441 and NSFC with Project 61472476. Email: reesse@126.com.
 Referring to: Theoretical Computer Science, v654, Nov 2016, pp.128–142.

 1

mailto:reesse@126.com

> http://eprint.iacr.org/2013/327.pdf <

 it is computationally infeasible to find two arbitrary messages   ′ such that ĥ() = ĥ(′),
namely ĥ is strongly collision-free.

The word “infeasible” means that some problem cannot be solved at least in polynomial time or in
tolerable subexponential time.

At present, SHA-1, SHA-256, and SHA-384 announced by NIST are among the hash functions that
are believed to be secure though they each cannot resist birthday attack, which means that the security
of each of them is nearly the O(2 m / 2) magnitude, where m is the bit-length of a message digest namely
a hash output. It is well known that the output bit-lengths of these three functions are 160, 256, and 384
respectively.

When any of the three is practically paired with a lightweight signing scheme of which the modulus
length is between 80 and 160 bits, its output must be adjusted to the range of the modulus length of the
singing scheme with its security unchanged or corresponding to the signing scheme.

The modulus length of the optimized REESSE1+ signing scheme based on a transcendental
logarithm problem and a polynomial root finding problem is 80 [6], and its security is the 280
magnitude at present. When SHA-1 is paired with this signing scheme, the output of SHA-1 must be
adjusted to 80 bits with its security unchanged. Again when SHA-256 is paired with ECC-160, the
output of SHA-256 must be adjusted to 160 bits with its security being at least the 280 magnitude.

Therefore, it is a problem in practice how to adjust a message digest from a classical hash function
to the range of the modulus bit-length of a host signing scheme and to keep the security of the message
digest being unchanged or corresponding to the host signing scheme.

In this paper, the authors devise a new non-Merkle-Damgård structural (non-MDS) hash function
called JUNA which is based on a multivariate permutation problem (MPP) and an anomalous subset
product problem (ASPP) [6][7], and includes two algorithms: an initialization algorithm and a
compression algorithm, converts a short message or a message digest of n bits into an output string of
m bits, where 80  m  232 and 80  m  n  4096, and moreover ensures that the security of the output
against existent collision attacks is to the O(2m) magnitude.

The new hash is efficient and economical in the integrity examination, and has two dominant
novelties:
 devising the initialization algorithm based on a MPP which only has an exponential time solution

currently, and makes the new hash function be able to resist birthday attack;
 devising the compression algorithm based on an ASPP which also only has an exponential time

solution currently, and makes the new hash function be able to resist other conventional attacks,
especially meet-in-the-middle attack.

The significance of the paper lies in the thing that a new non-iterative hash function with an m-bit
output and the O(2m) magnitude security is first proposed by the authors while a classical iterative hash
function with an m-bit output bears only the O(2m

/

2) magnitude security.

Throughout the paper, unless otherwise specified, an even number n  80 is the bit-length of a short
message or the item-length of a sequence, the sign % denotes “modulo”,  does “M – 1” with M prime,
lg x means a logarithm of x to the base 2, bi does NOT operation of a bit bi, Þ does the maximal prime
allowed in a coprime sequence, |x| does the absolute value of a number x, x does the order of x % M, S

 does the size of a set S, and gcd(x, y) represents the greatest common divisor of two integers x and y.
Without ambiguity, “% M ” is usually omitted in expressions.

2 Several Definitions

2.1 A Coprime Sequence

Definition 1: If A1, …, An are n pairwise distinct positive integers such that  Ai and Aj (i  j), either
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F  1 with (Ai / F) ł Ak and (Aj / F) ł Ak  k ( i, j)  [1, n], these ordered
integers are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}.

Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence
of which all the elements are pairwise coprime is a coprime sequence.

For example, {15, 29, 163, 31, 37, 509, 21, 1669}, {37, 23, 7, 1009, 3, 1999, 937, 17}, {3607, 61,
59, 97, 1021, 211, 863, 2039}, and {10, 211, 127, 3, 14, 1021, 2017, 263} are four coprime sequences
separately.

 2

> http://eprint.iacr.org/2013/327.pdf <

Property 1: Let {A1, …, An} be a coprime sequence. If randomly select k  [1, n] elements Ax1, ,

Axk from the sequence, then the mapping from a subset {Ax1, , Axk} to a subset product G =  k
i = 1Axi is

one-to-one, namely the mapping from b1…bn to G =  n
i = 1Ai

b
i is one-to-one, where b1…bn is a bit string.

Refer to [6] for its proof.

2.2 A Bit Shadow and a Bit Long-shadow

Definition 2: Let b1…bn  0 be a bit string. Then ḅi with i  [1, n] is called a bit shadow if it comes
from such a rule:
 ḅi = 0 if bi = 0;
 ḅi = 1 + the number of successive 0-bits before bi if bi = 1; or
 ḅi = 1 + the number of successive 0-bits before bi + the number of successive 0-bits after the

rightmost 1-bit if bi is the leftmost 1-bit.
Notice that the third point of this definition is slightly different from that in [6].
For example, let b1…b8 = 01010100, then ḅ1…ḅ8 = 04020200.

Fact 1: Let ḅ1…ḅn be the bit shadow string of b1…bn  0. Then there is 

n
i=1 ḅ i = n.

Proof:

According to Definition 2, every bit of b1…bn is considered into 

k
i=1 ḅxi, where ḅx1, …, ḅxk are 1-bit

shadows in the string ḅ1…ḅn, and there is 

k
i=1 ḅxi = n.

On the other hand, there is 

nk
j=1 ḅyj = 0, where ḅy1, …, ḅyn  k are 0-bit shadows.

In total, there is 

n
i=1 ḅi = n. 

Property 2: Let {A1, …, An} be a coprime sequence, and ḅ1…ḅn be the bit shadow string of b1…bn 

0. Then the mapping from b1…bn to G = 

n
i=1 Ai

ḅi is one-to-one.

Proof:
Step 1. Let b1…bn and b′1…b′n be two different nonzero bit strings, and ḅ1…ḅn and ḅ′1…ḅ′n be the

two corresponding bit shadow strings.
If ḅ1…ḅn = ḅ′1…ḅ′n, then by Definition 2, there is b1…bn = b′1…b′n.
In addition, for any arbitrary bit shadow string ḅ1…ḅn, there always exists a preimage b1…bn. Thus,

the mapping from b1…bn to ḅ1…ḅn is one-to-one.

Step 2. Obviously the mapping from ḅ1…ḅn to 

n
i=1 Ai

ḅi is surjective.

Again presuppose that 

n
i=1 Ai

ḅi = 

n
i=1 Ai

ḅ′i for ḅ1…ḅn  ḅ′1…ḅ′n.

Since {A1, …, An} is a coprime sequence, and Ai

ḅi either equals 1 with ḅi = 0 or contains the same

prime factors as those of Ai with ḅi  0, we can obtain ḅ1…ḅn = ḅ′1…ḅ′n from 

n
i=1 Ai

ḅi = 

n
i=1 Ai

ḅ′i, which

is in direct contradiction to ḅ1…ḅn  ḅ′1…ḅ′n.

Therefore, the mapping from ḅ1…ḅn to 

n
i=1 Ai

ḅi is injective [8].

In summary, the mapping from ḅ1…ḅn to 

n
i=1 Ai

ḅi is one-to-one, and further the mapping from

b1…bn to 

n
i=1 Ai

ḅi is also one-to-one. 

Definition 3: Let ḅ1…ḅn be the bit shadow string of b1…bn  0. Then ƀi = ḅi 2
i with i  [1, n] is

called a bit long-shadow, where  i = bi + (1)
2(i – 1) / n (n / 2) = 0 or 1.

According to Definition 3, it is not difficult to understand that for every ƀi, there is 0  ƀi  n when
b1…bn  0.

For example, let b1…b8 = 01010100, then ƀ1…ƀ8 = 08020400.

Fact 2: Let ƀ1 … ƀn be the bit long-shadow string of b1 … bn  0. Then there is n  n
i=1 ƀi  2n.

Proof:
By Definition 3 and Fact 1, we have



n
i=1 ƀ i = 

n
i=1 ḅi 2

i and 

n
i=1 ḅi = n.

If every bi = 1, namely every  i = 1, then



n
i=1 ƀ i = 

n
i=1 ḅi 2

i = 2

n
i=1 ḅi = 2n.

Again, by Definition 3, not all the bits of b1…bn are zero.
If there exists only one nonzero bit in b1…bn ― bx = 1 with x  [1, n] for example, then

 3

> http://eprint.iacr.org/2013/327.pdf <



n
i=1 ƀ i = 

n
i=1 ḅi 2

i = ḅx 2
x = ḅx = n,

where  x = bx + (1)
2(x – 1) / n (n / 2) = 0 due to bx being the unique nonzero bit.

Thus, it holds that n  

n
i=1 ƀ i  2n. 

Property 3: Let ƀ1…ƀn be the bit long-shadow string of b1…bn  0. Then the mapping from b1…bn
to ƀ1…ƀn is one-to-one.

Proof:
On one hand, assume that a bit string b1…bn  0 is known.
It is understood from Definition 3 that ƀi = ḅi 2

i for each i.

Because when b1…bn is known, ḅ1…ḅn and  1…n can be respectively determined, ƀ 1…ƀ n can also
be determined uniquely.

On the other hand, assume that a bit long-shadow string ƀ 1…ƀ n is known.
According to ƀi = ḅi 2

i and ƀi = 0 with ḅi = 0, where i = bi + (1)
2(i – 1) / n (n / 2), we can determinate bi for i

= 1, …, n as follows.
 Case of ƀi = 0
If ƀi = 0, then ḅi = 0, and set bi = 0.
 Case of ƀi  0
If ƀi  0, then ḅi  0, and set bi = 1.
In this way, the value of every bi can be determined uniquely.
In summary, the mapping from b1…bn to ƀ1…ƀn is one-to-one. 

2.3 A Lever Function

The devising of the initialization algorithm of the new hash function is based on the intractable
problem Ci  (Ai W

ℓ

(i))

δ (% M) for i = 1, …, n which is first utilized for the REESSE1+ asymmetric
cryptosystem, where the exponent ℓ(i) is called a lever function [6].

Definition 4: The secret parameter ℓ(i) in the transform of a non-iterative hash function is called a
lever function, if it has the following features:
 ℓ(.) is an injection from the domain {1, …, n} to the codomain   {5, …, } with  large;
 the mapping between i and ℓ(i) is established randomly without an analytical expression;
 an attacker has to be faced with all the permutations of elements in  when inferring a related

private parameter from a public parameter or an initial value;
 the owner of the private parameter only need to consider the polynomial arithmetic of elements in

 when decrypting a ciphertext or seeking a collision.
Feature  and  make it clear that if n is large enough, it is infeasible for the attacker to search all

the permutations of elements in  exhaustively while the decryption or collision computation by the
owner of the private parameter is feasible. Thus, the amount of calculation on ℓ(.) is large at “a public
terminal”, and is small at “a private terminal”.

Property 4 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci  (Ai W ℓ
(i))δ (% M) with ℓ(i)   = {5, …, n +

4} and Ai   = {2, …, Þ | 863  Þ  1201} for i = 1, …, n. Then  W (W   )  (1, ), and  x, y, z
(x  y  z)  [1, n],
 when ℓ(x) + ℓ(y) = ℓ(z), there is ℓ(x) + W  + ℓ(y) + W   ℓ(z) + W  (% );
 when ℓ(x) + ℓ(y)  ℓ(z), there always exist

Cx  A′x W′ ℓ′(x) (% M), Cy  A′y W′ ℓ′(y) (% M), and Cz  A′z W′ ℓ′(z) (% M)
such that ℓ′(x) + ℓ′(y)  ℓ′(z) (% ) with the constraint A′z  Þ.

Proof:
 It is easy to understand that

W
ℓ(x

)
  W

ℓ(x

)

+

W

, W
ℓ(y

)
  W

ℓ(y

)

+

W

, and
W

ℓ(z

)
  W

ℓ(z

)

+

W

 (% M).
Due to W   , 2W   W , and ℓ(x) + ℓ(y) = ℓ(z), it follows that

ℓ(x) + W  + ℓ(y) + W   ℓ(z) + W  (% ).
However, it should be noted that when W  = , there is ℓ(x) + W  + ℓ(y) + W   ℓ(z) + W  (% ).
 Let Ōd be an oracle on solving a discrete logarithm problem.
Suppose that W ′  [1, ] is a generator of (*

M , ·).
In light of group theories,  A′z  {2, …, Þ}, the congruence

 4

> http://eprint.iacr.org/2013/327.pdf <

Cz  A′z W ′ ℓ′ (z

) (% M)
has a solution. Then, ℓ′(z) may be taken through Ōd.

 ℓ′(x)  [1, ], and let
ℓ′(y)  ℓ′(z) – ℓ′(x) (% ).

Further, from the congruences Cx  A′x W ′ ℓ′ (x

) (% M) and Cy  A′y W ′ ℓ′ (y

) (% M), we can obtain many
distinct pairs (A′x, A′y), where A′x, A′y  (1, M), and ℓ′(x) + ℓ′(y)  ℓ′(z) (% ).

In this way, Property 4 is proven. 
Notice that letting  = {5, …, n + 4}, namely every ℓ(i)  5 makes seeking W from W ℓ(i)  Ai

–1
 Ci (%

M) face an unsolvable Galois group when the value of Ai  Þ is guessed [9], and moreover Property 4
still holds when  is any subset containing n elements from {1, …, }.

Property 4 manifests that will continued fraction attack on Ci  Ai W
ℓ(i) (% M) by Theorem 12.19 in

Section 12.3 of [10] be utterly ineffectual only if elements in  are fitly selected [11].

3 Design of the New Non-iterative Hash Function

The Chaum-Heijst-Pfitzmann hash function, a non-iterative one, is appreciable. It is based on a
discrete logarithm problem, and proved to be strongly collision-free [12].

The new non-iterative hash function is composed of two algorithms which contain two main
parameters m and n, where m denotes the bit-length of a modulus utilized in the new hash, n denotes
the bit-length of a short message or a message digest from a classical hash function, and there are 80 
m  232 with 80  m  n  4096.

Additionally,  and  are two integral sets. Their lengths are selected as 210    232 and n    =
ñ  232, and moreover make 2n5 5  2m (see Section 4.1.1). Notice that 210    232 means 10 
lgÞ  32.

For example, as m = 80  n, there should be  = 210 and   = n; as m = 96  n, should  = 212 and
  = n; as m = 112  n, should  = 214 and   = n; as m = 128  n, should  = 216 and   = 212; as m
= 232  n, should  = 232 and   = 232.

3.1 Initialization Algorithm

This algorithm is employed by an authoritative third party or the owner of a key pair, and only needs
to be executed one time.

INPUT: the bit-length m of a modulus with 80  m  232;
the item-length n of a sequence with 80  m  n  4096;
the maximal prime Þ with 10  lgÞ  32;
the size ñ of the set  with 2ñn5Þ 5  2m and n  ñ  232.

S1: Produce   {2, 3, …, Þ};
produce a random coprime sequence {A1, , An | Ai  }.

S2: Find a prime M with lg M = m such that  / 2 is a prime,
or the least prime factor of  / 2 > 4n(2ñ + 3).

S3: Pick W  (1, ) making W   2m – lgÞ;
pick δ  (1, ) making gcd(δ, ) = 1.

S4: Randomly yield   {+/5, +/7, …, +/(2ñ + 3)};
randomly select pairwise distinct ℓ(i)   for i = 1, , n.

S5: Compute Ci  (Ai W ℓ

(i))δ % M for i = 1, , n.
OUTPUT: an initial value ({Ci}, M) which is public to the people.
A private parameter ({Ai}, {ℓ(i)}, W, δ) may be discarded, but must not be divulged.
At S3, to seek W, let W  g / F (% M), where g is a generator of (*

M , ·) obtained through Algorithm
4.80 in Section 4.6 of [1], and F < 2lg Þ is a factor of .

At S4,  = {+/5, +/7, …, +/(2ñ + 3)} indicates that  is one of 2ñ potential sets, indeterminate,
and unknown to the public, where “+/” means the selection of the “+” or “” sign. Notice that in the
arithmetic modulo , x represents  – x.

 5

> http://eprint.iacr.org/2013/327.pdf <

Definition 5: Given ({Ci}, M), seeking the original ({Ai}, {ℓ(i)}, W, δ) from Ci  (Ai W
ℓ (i))δ (% M)

with Ai  {2, 3, …, Þ | 10  lgÞ  32} and ℓ(i)  {+/5, +/7, …, +/(2ñ + 3) | n  ñ  232} for i =
1, …, n is referred to as a multivariate permutation problem, shortly MPP [6].

Property 5: The MPP Ci  (Ai W
ℓ (i))δ (% M) with Ai  {2, 3, …, Þ | 10  lgÞ  32} and ℓ(i) 

{+/5, +/7, …, +/(2ñ + 3) | n  ñ  232} for i = 1, …, n is computationally at least equivalent to the
discrete logarithm problem (DLP) in the same prime field.

3.2 Compression Algorithm

This algorithm is employed by one who wants to obtain a short message digest.
INPUT: an initial value ({C1, , Cn}, M), where lg M = m with 80  m  n  4096;

A short message (or a digest from a classical hash function) b1…bn  0.
S1: Set k  0, i  1.
S2: If bi = 0 then

S2.1: let k  k + 1, ḅi  0
else

S2.2: if i = k + 1 then let   i;
S2.3: let ḅi  k + 1, k  0.

S3: Let i  i + 1;
if i  n then go to S2.

S4: Compute ḅ  ḅ + k.

S5: Compute ḏ  

n
i=1 Ci

ƀi % M,

where ƀi = ḅi 2
i with  i = bi + (1)

2(i – 1) / n (n / 2).

OUTPUT: a digest ḏ  

n
i=1 Ci

ƀi (% M) of which the bit-length is m.

It is easily known from Definition 3 that the max of {ƀ1, …, ƀn} is less than or equal to n when
b1…bn  0.

Definition 6: Given (ḏ, M), seeking the original ƀ1…ƀn from ḏ  

n
i=1 Ci

ƀi (% M), where ƀi = ḅi 2
i

with  i = bi + (1)
2(i – 1) / n (n / 2) and ḅi being a bit shadow is referred to as an anomalous subset product

problem, shortly ASPP [6].

Property 6: The ASPP ḏ  

n
i=1 Ci

ƀi (% M), where ƀi = ḅi 2
i with  i = bi + (1)

2(i – 1) / n (n / 2) and ḅi being a

bit shadow is computationally at least equivalent to the DLP in the same prime field.

3.3 Proofs of Property 5 and 6

Definition 7: Let A and B be two computational problems. A is said to reduce to B in polynomial
time, written as A 

P
T B, if there is an algorithm for solving  which calls, as a subroutine, a

hypothetical algorithm for solving B, and runs in polynomial time, excluding the time of the algorithm
for solving B [1][13].

The hypothetical algorithm for solving B is called an oracle. It is easy to understand that no matter
what the time complexity of the oracle is, it does not influence the result of the comparison.

A 

P
T B means that the difficulty of A is not greater than that of B, namely the time complexity of the

fastest algorithm for solving A is not greater than that of the fastest algorithm for solving B when all
polynomial times are treated as the identical magnitude. Concretely speaking, if A cannot be solved in
polynomial or subexponential time, correspondingly B cannot also be solved in polynomial or
subexponential time; and if B can be solved in polynomial or subexponential time, correspondingly A
can also be solved in polynomial or subexponential time.

Definition 8: Let A and B be two computational problems. If A 

P

T B and B 

P

T A, then A and B are
said to be computationally equivalent, written as A =

P

T B [1][13].
A =

P

T B means that either if A is a intractability with a certain complexity on a condition that its
dominant variable approaches a large number, B is also a intractability with the same complexity on the
identical condition; or both A and B can be solved in linear or polynomial time.

Obviously, Definition 7 and 8 gives a partial order relation among the complexities or difficulties of
computational problems [14], and suggest a reductive proof method called polynomial time Turing

 6

> http://eprint.iacr.org/2013/327.pdf <

reduction (PTR) [13].
In addition, for convenience sake, let Ĥ(y = f(x)) represent the complexity or difficulty of the

problem of solving y = f(x) for x [15].
What follows is the proof of Property 5.
Proof:
Firstly, we systematically consider Ci  (Ai W ℓ (i))δ (% M) for i = 1, …, n.
Assume that each gi  Ai W ℓ (i) (% M) with ℓ(i)  {+/5, +/7, …, +/(2ñ + 3) | n  ñ  232} is a

constant.
Let

gi  g

x
i (% M), and zi  δ xi (% ),

where g  *
M be a generator.

Then, there is
Ci  gi

δ  g
δ

x

i (% M) for i = 1, …, n.

Again let
δ xi  zi (% ).

Further
Ci  g

z
i (% M) for i = 1, …, n.

The above expression corresponds to the fact that in the ElGamal cryptosystem where many users
share the modulus and a key generator, User 1 acquires a private key z1 and a public key C1, …, and
User n acquires a private key zn and a public key Cn. It is well known that in this case, the attack of an
adversary is still faced with the DLP, namely seeking zi from the simultaneous equation Ci  g

z
i (% M)

for i = 1, …, n is computationally equivalent to the DLP [1].
Thus, when every gi is weakened to a constant, seeking δ from Ci  gi

δ (% M) for i = 1, …, n is
computationally equivalent to the DLP, which indicates that when every gi is not a constant, seeking gi
and δ from Ci  gi

δ (% M) for i = 1, …, n is computationally at least equivalent to the DLP.
Secondly, singly consider a certain Ci, where the subscript i is designated.
Assume that Ōm(Ci, M, Ṟ) is an oracle on solving Ci  gi

δ (% M) for gi and δ, where i is in {1, …, n},
and Ṟ is a constraint on gi such that the original gi and δ can be found.

Let y  g
x (% M) be of the DLP. Then, by calling Ōm(y, M, g), x can be obtained.

According to Definition 7, there is
Ĥ(y  g

x (% M)) 

P
T Ĥ(Ci  gi

δ (% M)),
which indicates that when only a certain gi is known, seeking gi and δ from Ci  gi

δ (% M) is
computationally at least equivalent to the DLP.

Integrally, we say that seeking the original {Ai}, {ℓ(i)}, W, and δ from the public key Ci  (Ai W
 ℓ (i))δ

(% M) for i = 1, …, n is computationally at least equivalent to the DLP in the same prime field. 
What follows is the proof of Property 6.
Proof:

Assume that Ōa(ḏ, C1, , Cn, M) is an oracle on solving ḏ  

n
i=1 Ci

ƀi (% M) for ƀ1…ƀn, where ƀ1…ƀn

is the bit long-shadow string of b1bn.
Particularly, when C1 =  = Cn = C, define

ḏ  

n
i=1 C

(n + 1)n  i

ƀ
i  

n
i=1 (C

(n + 1)n  i
)ƀi (% M)

with 0  ƀi  n, and define the corresponding oracle as Ōa(ḏ, C
(n + 1)n  1

, , C
(n + 1)0

, M).

Let Ḡ1  

n
i=1 Ci

bi (% M) be of the subset product problem (SPP) [6][7][16].

Since there is 0  bi  ƀi, and the mapping from ƀ1…ƀn to b1bn is one-to-one, by calling Ōa(Ḡ1, C1,
, Cn, M), we can find b1bn.

By Definition 7, there is

Ĥ(Ḡ1  

n
i=1 Ci

bi (% M)) 

P
T Ĥ(ḏ  

n
i=1 Ci

ƀi (% M)).

By Property 5 in [6], there is

Ĥ(y  g
x (% M)) 

P
T Ĥ(Ḡ1  

n
i=1 Ci

bi (% M)).
Further, by transitivity, there is

Ĥ(y  g
x (% M)) 

P
T Ĥ(ḏ  

n
i=1 Ci

ƀi (% M)).

Therefore, solving ḏ  

n
i=1 Ci

ƀi (% M) for ƀ1…ƀn is at least equivalent to the DLP in the same prime

 7

> http://eprint.iacr.org/2013/327.pdf <

field in computational complexity. 

4 Security Analysis of the New Hash Function

It is should be noted that lg M = m, but not n, is the security dominant parameter of the new
non-iterative hash function.

4.1 Security of the Initialization Algorithm

Clearly, the security of the initialization algorithm depends on the security of the MPP Ci  (Ai W ℓ(i))δ
(% M) with Ai   = {2, 3, …, Þ | 10  lgÞ  32} and ℓ(i)   = {+/5, +/7, …, +/(2ñ + 3) | n  ñ
 232} for i = 1, …, n.

In [6], we analyze the security of the MPP Ci  (Ai Wℓ(i))δ (% M) with Ai  {2, 3, …, Þ | 863  Þ 
1201} and ℓ(i)  {5, 7, …, (2n + 3)} for i = 1, …, n from the three aspects, discover no subexponential
time solution to it, and contrarily, find some evidence which inclines people to believe that the MPP is
computationally harder than the DLP.

Considering that the set  is different from the old in [6], and the range of Þ is larger than the old in
[6], we will analyze the security of the MPP with the different restrictions additionally.

4.1.1 Ineffectualness of Presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)

Because of  = {+/5, +/7, …, +/(2ñ + 3)}, when the absolute values |ℓ(x1)|, |ℓ(x2)|, |ℓ(y1)|, |ℓ(y2)|
are determined, the value ℓ(x1) + ℓ(x2)  (ℓ(y1) + ℓ(y2)) has 24 = 16 possible cases, which enhances the
indeterminacy of the lever function, and increases the complexity of an attack task for cracking the
MPP to some extent.

Adversaries may try to eliminate W through judging ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).
 x1, x2, y1, y2  [1, n], presuppose that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) holds.
Let

Gz  Cx1
Cx2

(Cy1
Cy2

)–1 (% M), namely

Gz  (Ax1
Ax2

(Ay1
Ay2

)–1)δ (% M).

If the adversaries divine the values of Ax1
, Ax2

, Ay1
, Ay2

, and compute u, vx1, vx2, vy1, vy2 in at least

LM [1 /3, 1.923] time such that
Gz  gu, Ax1  gvx1, Ax2  gvx2, Ay1  gvy1, Ay2  gvy2 (% M),

where g is a generator of (*
M , ·), then

u  (vx1 + vx2 – vy1 – vy2)δ (% ).
If gcd(vx1 + vx2 – vy1 – vy2, ) | u, the congruence in δ has solutions. Because each of Ax1, Ax2, Ay1, Ay2

may traverse the interval , and the subscripts x1, x2, y1, y2 are unfixed, the number of potential values
of δ is about n4

 4. Notice that the number of non-repeated values of δ will be less than 2m.
In succession, we need to seek W.
Now, the most effectual approach to seeking W is that for every i, the adversaries fix a value of δ,

divine Ai and ℓ(i), and find the set i according to Ci  (Ai W ℓ
(i))δ (% M), where i is the set of possible

values of W meeting Ci  (Ai W ℓ
(i))δ (% M) for i = 1, …, n. If there exist W1  1, …, Wn  n which are

pairwise equal, the divination of δ, {Ai}, and {ℓ(i)} is thought right; else fix another value of δ, repeat
the above process.

Notice that due to  / 2 = a prime or the least prime factor of  / 2 > 4n(2ñ + 3), W ℓ
(i)  Ci

δ1Ai
1 (%

M) can be solved in polynomial time, and besides letting W = g

 % M is unnecessary.
It is not difficulty to understand that the size of every i is about (2 ).
In summary, the time complexity of the above attack task is

Ŧ = (n + )LM [1 / 3, 1.923] + (n44) + (n44)(2 )n
  2n5 5.

Concretely speaking,
For m = n = 80 with  = 210 &   = 80, Ŧ > 2(26.3)5(26.3)(210)5 = 288 > 2m.
For m = n = 96 with  = 212 &   = 96, Ŧ > 2(26.5)5(26.5)(212)5 = 2100 > 2m.

 8

> http://eprint.iacr.org/2013/327.pdf <

For m = n = 112 with  = 214 &   = 112, Ŧ > 2(26.8)5(26.8)(214)5 = 2112 = 2m.
For m = n = 128 with  = 216 &   = 212, Ŧ > 2(27)5(212)(216)5 = 2128 = 2m.
For m = n = 232 with  = 232 &   = 232, Ŧ > 2(27.8)5(232)(232)5 = 2232 = 2m.
Thus, the time complexity of the attack by presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) is not less than

O(2m) when  and   are chosen suitably.

4.1.2 Ineffectualness of Guessing W

Owing to 80  lgM  232,  can be factorized in tolerable subexponential time, and further a
value of W can be guessed.

Adversaries may try to eliminate W through W W   1 (% M).
Raising either side of every equation Ci  (Ai W ℓ

(i))δ (% M) to the W-th power yields

Ci

W   (Ai)
δ W  % M.

Suppose that the value of every Ai   = {2, 3, …, Þ | 10  lgÞ  32} is guessed, or the possible
values of every Ai are traversed.

Let Ci  gu

i (% M), and Ai  gv

i (% M), where g is a generator of (*
M , ·). Then

ui W   vi W  δ (% ) (i = 1, …, n).
Notice that ui  vi δ (% ), and {v1, …, vn} is not a super increasing sequence.
The above congruence is seemingly the MH transform [17]. Actually, {v1 W, …, vn W} is not a

super increasing sequence, and moreover there is not necessarily lg (ui W) = lg .
Because vi W   [1, ] is stochastic, the inverse δ–1 %  not need be close to the minimum

 / (ui W ), 2 / (ui W ), …, or (ui W  – 1) / (ui W ).
Namely δ–1 may lie at any integral position of the interval

[k / (ui W ), (k + 1) / (ui W )],
where k = 0, 1, …, ui W  – 1, which illustrates that the accumulation points of minima do not exist.
Further observing, in this case, when i traverses the interval [2, n], the number of intersections of the
intervals containing δ–1 is likely the max of {u1 W , …, un W } which is promisingly close to .
Therefore, the Shamir attack by the accumulation point of minima is fully ineffectual [18].

Even if find out δ

–1 through the Shamir attack method, because each of { v1, …, vn} has W 
solutions, the number of potential sequences {gv

1, …, gv
n} is up to W 

n.

Due to needing to verify whether {gv
1, …, gv

n} is a coprime sequence for each different sequence

{v1, …, vn}, the number of possible coprime sequences is in proportion to W 

n. Hence, the initial
{A1, …, An} cannot be determined in subexponential time. Further, the value of W cannot be computed,
and the values of W  and δ–1 cannot be verified, which indicates that the MPP can also be resistant to
the Shamir attack by the accumulation point of minima.

Additionally, the adversaries may divine the value of Ai in about O() time with i  [1, n], and
compute δ by vi W   ui W δ (% ). However, because of W  | , the equation will have W 
solutions. Therefore, the time complexity of finding the original δ is at least

Ŧ = (n + )LM [1 / 3, 1.923] + W 
  (n + )LM [1 / 3, 1.923] + 2lgÞ2m – lgÞ
  2 m.

It is also not less than O(2m).

4.2 Security of the Compression Algorithm

The compression algorithm of which the input message is treated as only a block is the main body of
the new non-iterative hash function, and thus, through it the four natural properties of the new hash
function are embodied dominantly.

Clearly, the security of the compression algorithm depends on the security of the ASPP ḏ  

n
i=1 Ci

ƀi

(% M), where ƀi = ḅi 2
i with  i = bi + (1)

2(i – 1) / n (n / 2) and ḅi being a bit shadow.

In [6], we analyze the security of the ASPP Ḡ  

n
i=1 Ci

ḅi (% M) from the three aspects, discover no

subexponential time solution to it, and contrarily, find some evidence which inclines people to believe

that Ḡ  

n
i=1 Ci

ḅi (% M) is computationally harder than the DLP. Due to ƀi = ḅi 2
i  ḅi, the security

 9

> http://eprint.iacr.org/2013/327.pdf <

conclusion about Ḡ  

n
i=1 Ci

ḅi (% M) is also suitable for ḏ  

n
i=1 Ci

ƀi (% M) which is just another form

of the ASPP. Hence ḏ  

n
i=1 Ci

ƀi (% M) has no subexponential time solution at present.

In what follows, we will analyze whether the compression formula ḏ  

n
i=1 Ci

ƀi (% M) satisfies the

four natural properties of a hash function, and especially resists the three classical attacks or not.
In terms of Section 3.2, given the initial value ({Ci}, M) and a short message b1…bn, it is

transparently easy to calculate the digest ḏ  

n
i=1 Ci

ƀi (% M).

4.2.1 Compression Algorithm Is Computationally One-way

Let C1  g
u

1 (% M), …, Cn  g
u

n (% M), ḏ  g
v (% M), where g is a generator of the group (*

M, ·),

and easily found when lg M < 1024.

Then, solving ḏ  

n
i=1 Ci

ƀi (% M) for ƀ1…ƀn, namely b1…bn, is equivalent to solving

ƀ1 u1 +  + ƀn un  v (% ),
which is called an anomalous subset sum problem, shortly ASSP [6], and computationally at least
equivalent to a subset sum problem (SSP) due to ƀi = ḅi 2

i  ḅi  bi  [0, 1].

The SSP has been proved to be NP-complete in its feasibility recognition form [19], and its
computational version, especially the density-high or length-big one, is NP-hard [1][20]. Hence,
solving ASSP is at least NP-hard.

Moreover in the non-iterative hash function, there is n  m = lg M and n  ƀi  bi  [0, 1]. The
knapsack density relevant to the ASSP ƀ1 u1 +  + ƀn un  v (% ) roughly equals

D = 

n
i=1 lg n / lg M

 = n lg n / m
 > lg n
 > 1,

which means that there exists many solutions to ƀ1 u1 +  + ƀn un  v (% ), namely the original
solution cannot be determined, or will not occur in a reduced lattice base defined by LLL [21]. Notice
that only such a ƀ1, …, ƀn from which a right bit string can be deduced will be a reasonable solution
vector. Experiments show that when D > 1, the probability that the original solution or a reasonable
solution is found through LLL lattice base reduction is almost zero [22].

Hence, LLL lattice base reduction attack on ASSP [21][23] is utterly ineffectual, which illustrates
that even although a DLP with the modulus bit-length less than 1024 can be solved, the original or a

reasonable ƀ1…ƀn cannot be found yet in DLP subexponential time, namely ḏ  

n
i=1 Ci

ƀi (% M) is

computationally one-way.

4.2.2 Compression Algorithm Is Weakly Collision-free

Assume that b1bn  0 is a short message or a message digest from a classical hash function. By
Definition 3, we easily understand that ƀi = ḅi 2

i  n i  [1, n].

Given a short message b1bn  0, and let b′1b′n  0 be another short message to need to be found.
Let ƀ1…ƀn be the bit long-shadow string of b1bn, and ƀ′1…ƀ′n be the bit long-shadow string of

b′1b′n.
Let lĥ be the compression algorithm of the new non-iterative hash function described in Section 3.2.

Hence, we have

ḏ = lĥ(b1bn) = 

n
i=1 Ci

ƀi % M,

and

ḏ ′ = lĥ(b′1b′n) = 

n
i=1 Ci

ƀ′i % M,

where ƀi = ḅi 2
i with  i = bi + (1)

2(i – 1) / n (n / 2), and ƀ′i = ḅ′i 2

′
i with  ′i = b′i + (1)

2(i – 1) / n (n / 2).

If ḏ = ḏ ′, there is



n
i=1 Ci

ƀi  

n
i=1 Ci

ƀ′i (% M).

Observe an extreme case.
Assume that C1 = … = Cn = C.
Owing to the max of 0  ƀi  n, we define logically

n
i=1Cƀi  n

i=1C
(n + 1)n – iƀi (% M).

 10

> http://eprint.iacr.org/2013/327.pdf <

Under the circumstances, if ḏ = ḏ ′, then there is



n
i=1 C

(n + 1)n – iƀi  

n
i=1 C

(n + 1)n – iƀ′i (% M),

namely

C 

n

i

=

1

(n + 1)n – iƀi  C 

n

i

=

1

(n + 1)n – iƀ′i (% M).

Let z  

n
i=1 ƀi (n + 1)n – i (% ), and z′  

n
i=1 ƀ′i (n + 1)n – i (% ).

Correspondingly,
C z  C z′ (% M).

We need to solve the above equation for z′.
If the order C is known, let z′ = z + kC, where k  1 is an integer. Once a fit k is found, there will

be C z  C z

′ (% M), and a bit string can be inferred from ƀ′1…ƀ′n. However, seeking C is of the integer
factorization problem (IFP) at present because the prime factors of  must be known.

In practice, C1, …, Cn that are produced through the algorithm in Section 3.1 are pairwise unequal,
which implies that for any given short message b1bn, seeking another short message b′1b′n such that



n
i=1 Ci

ƀi  

n
i=1 Ci

ƀ′i (% M) is harder than the IFP in computational complexity, namely b′1b′n for

lĥ(b1bn) = lĥ(b′1b′n) cannot be found in IFP subexponential time.
Therefore, we say that the new non-iterative hash function is weakly collision-free.

4.2.3 Compression Algorithm Is Resistant to Birthday Attack

First, observe an example of whether any two students in a class have the same birthday.
Suppose that the class has 23 students. If a teacher specifies a day (say February 12), then the chance

that at least one student is born on that day is (1 – (364 / 365)23)  6.11 %. However, the probability
that at least one student has the same birthday as any other student is around (1 – (365…343 /
36523))  50.73 %, which prompts birthday attack on hash functions. Notice that the number x of
students will need increasing to 249 (> 365 / 2) if the teacher wants to make (1 – (364 / 365)x) = 50 %.

Birthday attack, a type of strongly collision-free attack, is widely exploited for finding any two
messages  and ′ such that ĥ() = ĥ(′), namely (, ′) is a collision, where ĥ is a hash function
[24]. If the bit-length of a message digest is m, an adversary can find a collision (, ′) such that ĥ()
= ĥ(′) with probability 50% in roughly 1.1774  2m / 2 time, namely with input of 1.1774  2m / 2
random messages [25].

However, to the new non-iterative hash, a collision is transformed into a mapping which is a type of
weakly collision-free attack.

Theorem 1: The new non-iterative hash function is resistant to birthday attack on the assumption
that the MPP and ASPP have only exponential time solutions.

Proof:
Let b1bn and b′1b′n be two arbitrary different short messages, and ƀ1…ƀn and ƀ′1…ƀ′n be their bit

long-shadow strings respectively.

Suppose that ḏ = ḏ ′, namely  n
i=1 Ci

ƀ
i   n

i=1 Ci
ƀ′

i (% M).

Because the ASPP has only exponential time solutions, we cannot directly solve ḏ   n
i=1 Ci

ƀ′
i (% M)

for ƀ′1…ƀ′n.
In terms of the supposition, there is

 n
i=1 (Ai W ℓ

(i))δ
ƀ

i   n
i=1 (Ai W ℓ

(i))δ
ƀ′

i (% M).

Further,

W ḵ δ 

n
i=1(Ai)

δ

ƀ

i  W ḵ ′ δ 

n
i=1(Ai)

δ

ƀ′

i (% M),

where ḵ = 

n
i=1 ƀi ℓ(i), ḵ ′ = 

n
i=1 ƀ′i ℓ(i) % , and ḵ  ḵ ′ < 4n(2ñ + 3).

Raising either side of the above congruence to the δ

–1-th power yields

W ḵ  n
i=1 Ai

ƀ
i  W ḵ ′  n

i=1 Ai
ƀ ′

i (% M).

Without loss of generality, let ḵ  ḵ ′. Because (*
M , ·) is an Abelian group, we have

W ḵ – ḵ ′   n
i=1Ai

ƀ′
i( n

i=1 Ai
ƀ

i)–1 (% M).

Due to either  / 2 = a prime or the least prime factor of  / 2 > 4n(2ñ + 3), there is

W 2k
  ( n

i=1 Ai
ƀ′

i
 – ƀ

i)((ḵ – ḵ ′) / 2k)–1
 (% M), (1)

 11

> http://eprint.iacr.org/2013/327.pdf <

where k  [0, 46) is a small integer, (ḵ  ḵ ′) / 2k is a prime, and W  (1, ) as a component of a private
key is determinate, which manifests that if ƀ1…ƀn and ƀ′1…ƀ′n satisfy (1), there will be ḏ = ḏ ′.

For clear explanation, (1) is written as the form of a function:

x 2k
  ( n

i=1 Ai
ƀ′

i
 – ƀ

i)((ḵ – ḵ ′) / 2k)–1
 (% M). (2)

Since  contains only one 2-factor, (2) has only two solutions when k  0.
In other words, we may define a mapping from {0, 1}n  {0, 1}n to {1, …, }:

 (b1bn, b′1b′n)  ( n
i=1Ai

ƀ′
i
 – ƀ

i)((ḵ – ḵ ′) / 2k)–1
 (% M),

where ƀi = ḅi 2
i, ƀ′i = ḅ′i 2

i, ḵ = 

n
i=1 ƀi ℓ(i), ḵ′ = 

n
i=1 ƀ′i ℓ(i) % , k  [0, 46) is a integer, and (ḵ  ḵ ′) / 2k

is a prime.
Therefore, only if (b1bn, b′1b′n) = W 2k

 with k  [0, 46), can there exists ḏ = ḏ ′. Obviously, 
(b1bn, b′1b′n)  {0, 1}n  {0, 1}n, the probability that (b1bn, b′1b′n) = W 2k

 is nearly k/2m
(the number of values in the form of W 2k

 is at most k).
Further, let ṉ be the number of (b1bn, b′1b′n)′s which need to be inputted in order to find at least

one (b1bn, b′1b′n) such that (b1bn, b′1b′n) = W2k
 with probability 50%, namely to find any two

messages b1bn and b′1b′n such that lĥ(b1bn) = lĥ(b′1b′n) with probability 50%. Then, ṉ satisfies
1–((2m–k)/2m)ṉ = 50%. Resorting to computation, we see that ṉ is nearly equal to 2m – 1 with k  [0, 46).

The 2m – 1 is far larger than the threshold 1.1774  2m / 2 for the effective birthday attack. The reason
is that a hidden restriction is imposed on the input (b1bn, b′1b′n), which is easily understood as the
number of students of the class needs to be increased for finding any two students who have both the
same birthday and the same gender with probability 50%.

Additionally, because a private key ({Ai}, {ℓ(i)}, W, δ) is unknown for the adversary, and the MPP is
intractable, it is also infeasible that the adversary finds specific b1bn and b′1b′n which make (1) hold
according to the private key.

Therefore, the new non-iterative hash can be resistant to the birthday attack, and at present, its
security is nearly the O(2m) magnitude, but not O(2m / 2). 

4.2.4 Compression Algorithm Is Resistant to Meet-in-the-middle Attack

Meet-in-the-middle dichotomy used for attack on an intended expansion of a block cipher was first
developed by Diffie and Hellman in 1977 [26]. Section 3.10 of [1] brings forth a meet-in-the-middle
attack algorithm for solving a subset sum problem.

Let b1bn be a short message, and its digest be ḏ  

n
i=1 Ci

ƀi (% M).

If bn / 2 = bn = 1 (thus, any bit shadow on the left of the middle point has no relation with bits on the

right), an adversary may attempt to attack the ASPP ḏ  

n
i=1 Ci

ƀi (% M) by the meet-in-the-middle

method.
However, owing to ƀi = ḅi 2

i with  i = bi + (1)
2(i – 1) / n (n / 2) for every i  [1, n], when i is from 1 to n / 2,

there exists
ƀ1…ƀn / 2 = (ḅ1 2b

1 + n / 2)…(ḅn / 2 2b
n),

which involves all the bits of the short message, namely a reasonable middle point does not exist.
If a fork is selected in proportion to (n / 3 : 2n / 3) or (n / 4 : 3n / 4), the right of the fork substantially

still involves all the bits b1, …, bn.
For instance, let n = 12, a short message (a bit string) = b1…b12, and a fork be to (4 : 8), then

ƀ5…ƀ12 = (ḅ5 2b
11)(ḅ6 2b

12)(ḅ7 2b
1) (ḅ8 2b

2)(ḅ9 2b
3)(ḅ10 2b

4)(ḅ11 2b
5)(ḅ12 2b

6)

involves all the bits b1, …, b12.
The above dissection manifests that the meet-in-the-middle attack is essentially ineffectual on the

new non-iterative hash function. Therefore, even if n = m, namely the input length = the output length
of the function, the time complexity of the attack task is still O(2m) at present, but not O(m2m / 2).

Besides, unlike 

n
i=1 ci = 

n
i=1 bi ci + 

n
i=1 bi ci in the SSP, there is not



n
i=1 Ci = 

n
i=1 Ci

ƀi 

n
i=1 Ci

ƀi (% M)

in the ASPP, where ƀi is the bit long-shadow of bi, which implies there does not exist an easy

relation between the ASPP ḏ  

n
i=1 Ci

ƀi (% M) and the dichotomy.

4.2.5 Compression Algorithm Is Resistant to Multi-block Differential Attack

 12

> http://eprint.iacr.org/2013/327.pdf <

The [27] and [28] show that multi-block near differential attack is effective on the iterative hash
functions MD5, SHA-0, SHA-1, and SHA-256 which have multiple block-inputs and the Merkle-

Damgård structure [4][5].
It is well known that MD5, SHA-0, or SHA-1 will execute a number of rounds of inner manipulation

for every input block, and each round of the inner manipulation consists of linear arithmetics and/or
logic operators such as addition, shift, and, not, exclusive or, etc.

The input of the new non-iterative hash function is a short message which may be treated as only
one block. Its inner manipulation consists of at most 2n modular multiplications which is nonlinear and

intricate, which indicates that the differential analysis of ḏ  

n
i=1 Ci

ƀi (% M) loses a basis.

Furthermore, in the new non-iterative hash, the inner nonlinear manipulation leads to the fierce
snowslide effect and strong noninvertibility (see Section 4.2.1), and makes it impossible to derive a set
of sufficient conditions which ensure that the collision differential characteristics hold for two short
messages which are expected to produce a collision.

Therefore, the new non-iterative hash is substantially distinct from the classical iterative hashes
MD5, SHA-0, SHA-1 etc, and the multi-block near differential attack suitable for the classical iterative
hashes will be utterly ineffective on the new non-iterative hash function.

4.2.6 Compression Algorithm Is Strongly Collision-free

Firstly, it is known from Section 4.2.2 that the new non-iterative hash function lĥ is weakly
collision-free.

Secondly, for any arbitrary short message b1bn, if want to find another short message b′1b′n such

that lĥ(b1bn) = lĥ(b′1b′n), adversaries must take ƀ′1…ƀ′n from 

n
i=1 Ci

ƀi  

n
i=1 Ci

ƀ′i (% M), and further

acquire the bit string b′1b′n. It is known from Section 4.2.2 that such a collision problem is
computationally harder than IFP now.

Thirdly, the new non-MDS hash is resistant to classical or efficient attacks in common use ― the
birthday attack, meet-in-the-middle attack, and multi-block differential attack for example.

Lastly, any subexponential time algorithm for solving the ASPP ḏ  

n
i=1 Ci

ƀi (% M) is not found yet

[29], and the most efficient method of solving ḏ  

n
i=1 Ci

ƀi (% M) is brute force attack so far. The

analysis manifests that the security of the new non-iterative hash gets the O(2m) magnitude at present.
In sum, the new hash function is strongly collision-free. Further, we may give a related theorem.
Theorem 2: If any arbitrary collision of the new non-iterative hash function can be found in

subexponential time, the ASPP 

n
i=1 Ci


i  1 (% M) can be solved in subexponential time, where i 

[n, n] is the difference of two bit long-shadows at the same position.
Proof:
According to Definition 3, it is easy to understand that for each ƀi, there is 0  ƀi  n.
Let b1bn  b′1b′n  0 be two arbitrary bit strings, ƀ1…ƀn and ƀ′1…ƀ′n be respectively two

corresponding bit long-shadow strings.
Again let i = ƀi  ƀ′i, and then there is i  [n, n].

Since the interval [n, n] is wider than [0, n], similar to ḏ  

n
i=1 Ci

ƀi (% M), the ASPP 

n
i=1 Ci


i  1

(% M) with i  [n, n] has no subexponential time solution [29], and is only faced with brute force
attack.

Assume that 

n
i=1 Ci

ƀi  

n
i=1 Ci

ƀ′i (% M) is a found collision between two arbitrary bit strings b1bn

and b′1b′n in subexponential time.

From 

n
i=1 Ci

ƀi  

n
i=1 Ci

ƀ′i (% M), we have



n
i=1 Ci

ƀi
  ƀ′i  1 (% M).

Let i  ƀi  ƀ′i  [n, n], and then



n
i=1 Ci


i  1 (% M),

which means that the ASPP 

n
i=1 Ci


i  1 (% M) can be solved efficiently in subexponential time. It is in

direct contradiction to the fact.
Therefore, the new non-iterative hash function is strongly collision-free. 

 13

> http://eprint.iacr.org/2013/327.pdf <

5 Comparison with the Chaum-Heijst-Pfitzmann Hash

The Chaum-Heijst-Pfitzmann hash function is provably secure, and defined as follows [12]:
ĥ: w1, w2  ĥ(w1, w2) = w

1  w
2 % p ({0, ..., q  1}2  p  {0}),

where w1 and w2 are the two complementary parts of a short message, p and q (= (p  1) / 2) are two big
primes, and  and  are two generators of the group (*

p , ·).
Hence, the Chaum-Heijst-Pfitzmann hash function based on the difficulty of the DLP  =  x % p

compresses a short message of 2(lg p  1) bits into a digest of lg p bits.
Let lg p = 1024, and then the time complexity of computing log  % p is 280 according to the

subexponential time Lp[1 /3, 1.923] [1], which means that the security of the Chaum-Heijst- Pfitzmann
hash is the 280 magnitude when lg p = 1024.

Let lg M = 80, and then the time complexity of solving the ASPP ḏ =  n
i=1Ci

ƀi % M for ƀ1, …, ƀn is

also 280 since the ASPP only has an exponential time solution at present [29], which means that the
security of the new non-iterative hash is also the 280 magnitude when lg M = 80. Besides, let the
bit-length n = 2046 of a short message (w1, w2) = (b1…b1023, b1024…b2046) = b1…bn  0.

Under the same security, may draw a comparison between the new non-iterative hash (the JUNA
hash) and the Chaum-Heijst-Pfitzmann hash.

Table 1. Comparison between two non-iterative hashes.

 Chaum-Heijst-Pfitzmann hash JUNA hash

Running time (bit operations) 2(4lgp3) = 8589934592 4nm2 = 52428800

Compression rate 1024 / 2046  50.05% 80 / 2046  3.91%

Resistant to birthday attack No
because the number of (w1, w2)′s
needed during birthday attack is
about 2lg p / 2 = 2512, and larger
than 280 which is the security
magnitude of the DLP.

Yes
because the number of b1…bn′s
needed during birthday attack is
about 2lg M / 2 = 240, and smaller
than 280 which is the security
magnitude of the ASPP.

Provably strongly
collision-free

Yes
on the assumption that a DLP has
a subexponential time solution.

Yes
on the assumption that an ASPP
has an exponential time solution.

In summary, the JUNA hash has some advantages over the Chaum-Heijst- Pfitzmann one, and
relatively the JUNA hash may be regarded lightweight.

6 Reformation of a Classical Hash Function

Because the new non-iterative hash function is resistant to birthday attack and meet-in- the-middle
attack, a classical hash function of which the output is m bits, and the security is intended to be the
O(2m / 2) magnitude may be reformed into a compact hash function of which the output is m / 2 bits, and
the security is still equivalent to the O(2m / 2) magnitude [30].

For example, let b1b128 be the output of MD5 [31], ḇ1ḇ128 be its bit long-shadow string, and

lg M = 64. Then, regard ḏ = 

128
i=1 Ci

ḇi % M as the 64-bit output of the reformed MD5 with the

equivalent security, where Ci = (Ai W ℓ

(i))δ % M which is produced by the algorithm in Section 3.1.
Again for example, let b1b160 be the output of SHA-1[1], ḇ1 ḇ160 be its bit long-shadow string,

and lg M = 80. Then, regard ḏ = 

160
i=1 Ci

ḇi % M as the 80-bit output of the reformed SHA-1 with the

equivalent security.
The above two examples indicate that we may exchange time for space when the related security

remains unchanged.

7 Conclusion

In the paper, the authors propose a new non-iterative hash function which contains the initialization
algorithm and the compression algorithm, and converts a short message or a message digest of n bits
into a string of m bits, where 80  m  232 and 80  m  n  4096.

 14

> http://eprint.iacr.org/2013/327.pdf <

The authors analyze the security of the new non-iterative hash function. The analysis shows that the
new non-iterative hash is computationally one-way, weakly collision-free, and strongly collision-free.
Moreover, at present, any subexponential time algorithm for attacking the new non-iterative hash is not
found, and its security is to the O(2m) magnitude.

Especially, the analysis illustrates that the new non-iterative hash function is resistant to birthday
attack and meet-in-the-middle attack, and that the running time of its compression algorithm is O(n m2)
bit operations.

The application of the new hash may be extended. In recent years, the ECC-160 digital signing
scheme, an analogue of the ElGamal digital signing scheme based on the DLP in an elliptic curve
group over a finite field [32][33], and some lightweight digital signing schemes ― the optimized
version of the REESSE1+ digital signing scheme [6] for example have been utilized for RF ID (Radio
Frequency Identity) tags or non-RF ID tags [34][35][36]. While a RF ID tag contains an IC chip which
is used to store signatures and other data, an non-RF ID tag, a BFID [37] ― for example contains no IC
chip because a signature from a lightweight or ultra-lightweight signing scheme may be symbolized in
short length, and printed directly on a papery tag or label. At present, such tags are applied to the
identification, authentication, or anti-forgery of financial-notes, certificates, diplomas, and
commodities, particularly including food and drug.

Hence, the new non-iterative hash function opens a door to convenience for the utilization of a
lightweight digital signing scheme of which the modulus length is not greater than 160 bits.

Acknowledgment

The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou, Jianhua Zheng, Changxiang Shen, Zhengyao
Wei, Binxing Fang, Guangnan Ni, Andrew C. Yao, Xicheng Lu, Wen Gao, Wenhua Ding, and Xiangke Liao for their important
advice and helps.

The authors also would like to thank the Professors Dingyi Pei, Jie Wang, Ronald L. Rivest, Moti Yung, Adi Shamir, Dingzhu
Du, Mulan Liu, Huanguo Zhang, Yixian Yang, Maozhi Xu, Hanliang Xu, Dengguo Feng, Xuejia Lai, Yongfei Han, Yupu Hu,
Dongdai Lin, Rongquan Feng, Ping Luo, Jianfeng Ma, Lusheng Chen, Chuankun Wu, Lin You, Wenbao Han, Bogang Lin,
Lequan Min, Qibin Zhai, Hong Zhu, Renji Tao, Zhiying Wang, Quanyuan Wu, and Zhichang Qi for their important suggestions
and corrections.

References

1. Menezes, A., Oorschot, P. V., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, London, UK (1997)
2. Stallings, W.: Cryptography and Network Security: Principles and Practice (2nd ed.). Prentice-Hall, New Jersey (1999)
3. Su, S., Yang, Y., Yang, B., etc: Design and Analysis of a Hash Ring-iterative Structure. Chinese Journal of Electronics,

vol.19(2), pp. 232-236 (2010)
4. Merkle, R.: One way hash functions and DES. In: Advances in Cryptology: CRYPTO ′89, pp. 428-446. Springer, New

York (1989)
5. Damgard, I.: A design principle for hash functions. In: Advances in Cryptology: CRYPTO ′89, pp. 416-427. Springer, New

York (1989)
6. Su, S., Lü, S.: A Public Key Cryptosystem Based on Three New Provable Problems. Theoretical Computer Science,

vol.426-427, pp. 91-117 (2012)
7. Su, S., Lü, S., Fan, X.: Asymptotic Granularity Reduction and Its Application. Theoretical Computer Science, vol. 412(39),

pp. 5374-5386 (2011)
8. Yan, S. Y.: Number Theory for Computing (2nd ed.). Springer, New York (2002)
9. Hungerford, T. W.: Algebra. Springer, New York (1998)

10. Rosen, K. H.: Elementary Number Theory and Its Applications (5th ed.). Addison-Wesley, Boston (2005)
11. Wiener, M. J.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory, vol.36(3), pp.

553-558 (1990)
12. Chaum, D., Heijst, E. V., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In:

Advances in Cryptology: CRYPTO ′91, pp. 470-484. Springer, New York (1992)
13. Du, D. Z., Ko, K.: Theory of Computational Complexity. John Wiley & Sons, New York (2000)
14. Schröder, B.: Ordered Sets: An Introduction. Birkhäuser, Boston (2003)
15. Davis, M.: The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions.

Dover Publications, Mineola (2004)
16. Naccache, D., Stern, J.: A New Public Key Cryptosystem. In: Proc. of Advances in Cryptology: EUROCRYPT ′97, pp.

27-36. Springer, New York (1997)
17. Merkle, R. C., Hellman, M. E.: Hiding information and Signatures in Trapdoor Knapsacks. IEEE Transactions on

Information Theory, vol.24(5), pp. 525-530 (1978)
18. Shamir, A.: A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem. In 23th IEEE Symposium on

the Foundations of Computer Science, pp. 145-152. IEEE Press, New York (1982)

 15

> http://eprint.iacr.org/2013/327.pdf <

19. Du, D. Z., Ko, K., Hu, X.: Design and Analysis of Approximation Algorithms (in Chinese). Higher Education Press, Beijing,
PRC (2011)

20. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge, UK (2001)
21. Brickell, E. F.: Solving Low Density Knapsacks. In: Advance in Cryptology: CRYPTO ′83, pp. 25-37. Plenum Press, New

York (1984)
22. Li T., Su, S.: Analysis of Success Rate of Attacking Knapsacks from JUNA Cryptosystem by LLL Lattice Basis Reduction.

In: 9th Int. Conf. on Computational Intelligence and Security, pp. 454-458. IEEE Press, New York (2013)
23. Coster, M. J., Joux, A., LaMacchia, B. A., etc: Improved Low-Density Subset Sum Algorithms. Computational Complexity,

vol.2(2), pp. 111-128 (1992)
24. Bellare, M., Kohno, T.: Hash Function Balance and Its Impact on Birthday Attacks. In: Advances in Cryptology:

EUROCRYPT ′04, pp. 401-418. Springer, Heidelberg (2004)
25. Girault, M., Cohen, R., Campana, M.: A Generalized Birthday Attack. In: Advances in Cryptology: EUROCRYPT ′88, pp.

129-156. Springer, Heidelberg (1988)
26. Diffie, W., Hellman, M. E.: Exhaustive Cryptanalysis of the NBS Data Encryption Standard. Computer, vol.10(6), pp.

74-84 (1977)
27. Biham, E., Chen, R., Joux, A., etc: Collisions of SHA-0 and Reduced SHA-1. In: Advances in Cryptology: EUROCRYPT

′05, pp. 36-57. Springer, Heidelberg (2005)
28. Wang, X., Yin, Y. L., Yu, H.: Finding Collisions in the Full SHA-1. In: Advances in Cryptology: CRYPTO ′05, pp. 17-36.

Springer, Heidelberg (2005)
29. Su, S., Lü, S.: REESSE1+ · Reward · Proof by Experiment · A New Approach to Proof of P != NP. Cornell University

Library, http://arxiv.org/pdf/0908.0482 (2009, revised 2014)
30. Bellare, M., Micciancio, D.: A New Paradigm for Collision-free Hashing: Incrementality at Reduced Cost. In: Advances in

Cryptology: EUROCRYPT '97, pp. 163-192. Springer, Heidelberg (1997)
31. Rivest, R. L.: The MD5 Message Digest Algorithm. RFC 1321, Apr. 1992.
32. Blake, I. F., Seroussi, G., Smart, N. P.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge, UK

(1999)
33. ElGamal, T.: A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on

Information Theory, vol. 31(4), pp. 469-472 (1985)
34. Ranasinghe, D. C.: Lightweight Cryptography for Low Cost RFID. Networked RFID Systems and Lightweight

Cryptography, pp. 311-346. Springer, Heidelberg (2007)
35. Chien, H.-Y.: SASI: A New Ultralightweight Rfid Authentication Protocol Providing Strong Authentication and Strong

Integrity. IEEE Transactions on Dependable and Secure Computing, vol. 4(4), pp. 337-340 (2007)
36. Shamir, A.: SQUASH - A New MAC with Provable Security Properties for Highly Constrained Devices Such as RFID

Tags. In: Fast Software Encryption ′08, pp. 144-157. Springer, Heidelberg (2008)
37. Su, S., Li, N., Lü, S.: Drug Anti-forgery and Tracing System Based on Lightweight Asymmetric Identities. In: 10th PAISI,

pp.82-90. Springer, Heidelberg (2015)

Appendix A: An Example

Let lgM = 80, and n = 256.

Solving the MPP:
Given M = 636743755563737235857207, and {C1, , C256} =

{394375509141369037703184,554405328844801192217442,398990392120059456829699,63606871
0931207324336104,179366946033260810673265,182182128843950184496233,28365343276279896
0694200,391748237477785007893514,94461230573833399041634,146396573827145853058025,544
816169334706503213027,364481169034548457969826,477943409648888873528887,495981229119
127077122569,303247879531079652865837,30261040114671964564035,6048062007680616619483
67,226709912769734878042146,21106787083544425020747,450585510787322862879583,11388974
1803376766817431,33779824107636677690000,624343348434427417711884,813943362892832145
4057,96506382190311057614248,359344008158083077617116,475087369983772394584265,286675
906747363274106643,273904561106043852824719,290154030115540709591119,542337668830272
754302104,424209565234481301351243,482163813841492061131471,127934386844210811350835,
594961208610220091706500,368457620191339441765069,333246120093389698485472,240036277
940820391108175,326079559057243941942753,180855393210421934443585,558957548924545352
698752,116963332670423702444319,620364395658763217288588,74708020842608861961919,3386
03136005253750049019,618279924416273562129128,600081310839835683212541,6066758736575
17853028369,215973513658356020420635,539913213636759819602147,6739739080158457844725
5,102206491211043454760486,171011183472338301996410,556402611627196680689898,38145810
5511009220697638,532956153792890202951438,360925851265173951197208,21660838745254761
390874,113278415082646883610336,587295387093175644250777,441835526319605486874262,495
857237690484091878476,427476083339017325472093,414844423032073223749402,267957140905

 16

> http://eprint.iacr.org/2013/327.pdf <

582483315581,407775402061415484796591,473329847751824796509235,237730540937571061336
583,454275729099091444480453,25066318726221672446827,213153434564424036920709,7695544
3512116632014080,577719850708310853721751,296881334499832564905758,28082635141801498
4314614,305079484542031100608532,369948879483802705833417,178519896368431501154183,15
5944443906621900967508,358879495202308295530086,538801869715990957229057,46219020894
0699793771101,40175197813197848260986,262448765064486865723793,220262077588719269492
112,192432627187402744418430,203874081871546080137836,273615761529636585860982,470964
18315766875202081,545718729741407541033298,256902461410255239515414,8679653331105043
1751282,615699406626702658312424,7277693714609385934040,623661508518352474833795,3413
38751078837461696260,83387358592867088491634,331745118809598203756547,14600841305494
0870474217,377718668238650499325708,573308954069191320954876,19258345547082926057252
6,257636756198775697553561,457854147247221048492853,295005661335709158380650,61310489
6771788170321637,47664063113225317357072,112465310193651528643453,239327146015505183
869321,428852058761047961206417,621034609683055018803847,138845629932573936666694,389
988317063196994328710,625798568384070501018232,167048576453301484653376,639985062348
1354811793,2533120830669303709882,441364010361767243247859,215298769730452968440469,7
8885276009385645205656,366142537012652261414173,106705557479793492902577,34204768859
6789250089719,383295777538093497752089,226822823393548166858605,45472200978803464704
1861,96411007386730717155815,152271197161087713633906,425287855627697178809174,226205
831082936831340019,79145491695715867356427,243448386701422251112551,3465948018151363
7217315,62716951977126000974993,469120356154738212445264,618660910804439681244744,484
254940080337537672234,572166973409032644768790,3660579547160449865375,26312791843352
9780572115,170212898238335696139941,422732042511190107949564,30844604061253329995310
5,373003147046146839017941,509025463714927591001093,375881626021462104944196,58745770
8299708909023357,115257190305617586537407,610881911245478642078000,48375260940199943
3108445,217261946718280470713735,533424298980600127268003,361984585662190582028097,13
4348066141750912501798,403240403838225119367554,313367491914963584952010,24943420419
8818855115174,539488866558263483937488,399519957905911405204918,49133357241379952290
6743,616764503083569121724952,498941513621940376156838,360115355217060253333938,28675
6596346655156944400,543341681019728138219968,240993764872128300299962,18798947385919
6573392152,137421203010702125156501,489873292467205032012327,61296148343986720122971
6,633009400619994839941913,442965146354422859554362,322638110572502910167370,32234558
3769379567431049,462590776934506038776857,368824221513851136474572,22379442394454434
9100743,442946162562545923022539,535412005420704431112529,434535990291959608671501,60
5645010994779584866952,8070206291501441965154,493511370954416873059008,6188360274190
14613362898,590662580024211355162012,457494664211307406557064,9636134770074849166338
4,120583811596327848299164,180442197235245703784100,405740657284513824054844,40431194
047718221412170,468082207913731037323835,229468643859253759600978,598297710404864974
354341,209048001585555967856547,457743106588718408708912,596519246673853139695397,608
540108389989364933186,555583430086257539238992,353434117833141924681370,382842801308
302520061705,492071882418698492159424,621445795157335823489745,250076428477264581685
569,546213632312565034207207,497298374430742379786584,191037533658442834834989,593133
366832103108156787,212457956727128031940975,620485991163132474252386,757713731242739
57235870,260871794980499581085477,549333245096281904234582,443239692067375141612071,5
51544779707999411076756,288443772113295541911443,186925867422825217898560,3920573957
45465277837836,240883535976209539688869,549315739766192959945090,3690225479035973525
30869,235207478202534037876752,119244538852522553537061,63945386967446896983253,44799
3037869150695847160,349184653845911760345919,410978297720843053424788,29876812535317
8719219809,237490662717517417924479,601270004230179754794434,34007123330598556765721
9,554975899833724562810348,159174106445636336094312,69447150975168788093906,318489470
752076358290636,569233492081487464852735,486228321190255110795019,584931011042787342
545814,2785664312856083410998,14438706722340888857234,220309245141837703800089,135194
413116450095718244,83746532657126749294170,74688913428548277095222,23723636552989629
8380585,148733606480086004988750,60849020406129055574111,53286770559365760807706,5505
26874774302345635430,139918462219083995087941,328129290014413336506695,3975735392751
3730348711,11915217989393307961856,343253875442491197058730,541569087399401325673659,

 17

> http://eprint.iacr.org/2013/327.pdf <

 18

500378758398549449630036},
seek the original ({Ai}, {ℓ(i)}, W, δ) by Ci  (AiW

ℓ(i))δ (% M)(i = 1, …, 256), where Ai   = {2, 3, …,
287117}, and ℓ(i)   = {+/5, +/7, …, +/515}.

Solving the ASPP:
Given the initial value (M, {C1, , C256}) that precedes, a short message  = {b1, …, b256} =

{1,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,0,1,0,1,1,1,1,0,0,0,1,1,0,0,1,1
,0,0,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,0,1,1,0,0,1,1,1,1,
0,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,
0,0,1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,
0,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0},
and the digest ḏ = 566936505785934227489970,

seek a collision with  by ḏ   n
i=1Ci

ḇi (% M), where ḇi = ḅi2


i with  i = bi + (1)
2(i – 1) / n (n / 2).

	4.2.5 Compression Algorithm Is Resistant to Multi-block Differential Attack

