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Abstract. This paper gives the definition and property of a bit-pair shadow, and devises the three 
algorithms of a public key cryptoscheme called JUOAN that is based on a multivariate permutation 
problem and an anomalous subset product problem to which no subexponential time solutions are 
found so far, and regards a bit-pair as a manipulation unit. The authors demonstrate that the 
decryption algorithm is correct, deduce the probability that a plaintext solution is nonunique is 
nearly zero, analyze the security of the new cryptoscheme against extracting a private key from a 
public key and recovering a plaintext from a ciphertext on the assumption that an integer 
factorization problem, a discrete logarithm problem, and a low-density subset sum problem can be 
solved efficiently, and prove that the new cryptoscheme using random padding and random 
permutation is semantically secure. The analysis shows that the bit-pair method increases the 
density D of a related knapsack to a number more than 1, and decreases the modulus length lgM 
of the new cryptoscheme to 464, 544, or 640. 
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1 Introduction 

There is a sensitive relation between a subset sum problem and a shortest vector problem [1][2]. 
Let {u1, …, un} be a positive integer sequence, namely a knapsack, and  be a lattice spanned by n + 

1 vectors which compose a lattice basis. Then, each of the prior n vectors of the lattice basis is relevant 
to ui respectively, where i = 1, 2, …, or n, and the last vector is relevant to a subset sum, namely the 
element sum of a subset of {u1, …, un} [1][2].  

If the density of the knapsack is less than 0.9408, the shortest vector will occur in the reduced basis 
with high probability which indicates it is very likely that the subset sum problem will have a solution 
in polynomial time. If the density of the knapsack is greater than 1, there will exist many vectors which 
have the same shortest length in  which indicates that the special shortest vector as the solution to the 
subset sum problem will not occur in the reduced basis with high probability; or the solution to the 
subset sum problem is not among the shortest vectors [2]. 

In [3], we bring forward a prototypal public key cryptosystem called REESSE1+ which is based on 
the three new provable problems, contains the five algorithms, and is utilized for data encryption and 
digital signing. 

In REESSE1+, a ciphertext is defined as Ḡ  n 
i=1Ci

ḅ
i (% M), an anomalous subset product problem 

(ASPP), where M is a prime modulus, ḅi is the bit shadow of a bit bi, {Ci} is a public key sequence, and 
n is the bit-length of a plaintext block [3]. 

Let C1  g 
u

1 (% M), …, Cn  g 
u

n (% M), and Ḡ  g 
v (% M), where g is a generator of ( * 

M, ·) which 

can be found when the modulus M < 21024 is factorized in tolerable sub-exponential time [4]. Then 

solving Ḡ  n 
i=1Ci

ḅ
i (% M) for ḅ1ḅn is equivalent to solving  

ḅ1 u1 +  + ḅn un  v (%  ).                            (1) 
where v may be substituted with v + k  along with k  [0, n – 1] [5]. 

Equation (1) is called an anomalous subset sum problem (ASSP) due to every ḅi  [0, n] [3].  
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Likewise due to every ḅi  [0, n], {u1, …, un} is called a compact sequence [6]. 
May convert an ASSP into a subset sum problem (SSP) through converting ui to a binary number, 

and thus the density of an ASSP knapsack is defined as 

D =  n 
i=1 lg n / lg M = nlg n / lg M.                      (2) 

Transparently, the parameters lg M and n have an important influence on the value of D. 
In REESSE1+, there is D < 1, which means that the original solution to an ASSP may possibly be 

found through the LLL lattice basis reduction algorithm [7][8]. The LLL reduction algorithm is famous 
for it has a fatal threat to the classical MH knapsack cryptosystem [9] which accepts a public key and a 
plaintext block, and produces a ciphertext in the form of a subset sum. 

To avoid the low density of a knapsack from an ASPP and to decrease the modulus length of a 
cryptosystem, on the basis of REESSE1+, we propose a new cryptoscheme called JUOAN which treats 
a bit-pair as an operation unit, brings randomicity into a ciphertext when a bit string is encrypted, and is 
proved to be semantically secure. 

Throughout this paper, unless otherwise specified, n  80 is the bit-length of a plaintext block, ñ = n + 
16 is the bit-length of a padded plaintext block, the sign % denotes “modulo”,  does “M – 1” with M 
prime, lg x means the logarithm of x to the base 2,  does the opposite value of a bit, Þ does the 
maximal prime allowed in coprime sequences, |x| does the absolute value of a number x, x does the 
order of an element x % M, S  does the size of a set S, gcd(a, b) represents the greatest common divisor 
of two integers, and “bos” indicates the number of bit operations. Without ambiguity, “% M” is usually 
omitted in expressions. 

2 Several Definitions 

2.1 A Coprime Sequence 

Definition 1: If A1, …, An are n pairwise distinct positive integers such that  Ai, Aj (i  j), either 
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F  1 with (Ai / F) ł Ak and (Aj / F) ł Ak  k  i, j  [1, n], these integers 
are called a coprime sequence, denoted by {A1, …, An}, shortly {Ai}. 

Note that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence 
of which all the elements are pairwise coprime is a coprime sequence. 

For example, {15, 61, 163, 31, 37, 509, 21, 1669}, {37, 23, 7, 1009, 3, 1999, 937, 29}, {3607, 17, 
59, 97, 1021, 211, 863, 2039}, and {10, 211, 127, 307, 14, 1021, 2017, 263} are four coprime 
sequences separately. 

Property 1: Let {A1, …, An} be a coprime sequence. If randomly select k  [1, n] elements Ax1, , 

Axk from the sequence, then the mapping from a subset {Ax1, , Axk} to a subset product G =  k  
i = 1Axi is 

one-to-one, namely the mapping from b1…bn to G =  n  
i = 1Ai

b
i is one-to-one, where b1…bn is a bit string. 

Refer to [3] for its proof. 

2.2 A Bit Shadow 

Definition 2: Let b1…bn  0 be a bit string. Then ḅi with i  [1, n] is called a bit shadow if it comes 
from such a rule:  
 ḅi = 0 if bi = 0,  
 ḅi = 1 + the number of successive 0-bits before bi if bi = 1, or  
 ḅi = 1 + the number of successive 0-bits before bi + the number of successive 0-bits after the 

rightmost 1-bit if bi is the leftmost 1-bit. 

Fact 1: Let ḅ1…ḅn be the bit shadow string of b1…bn  0. Then there is  n 
i=1ḅ i = n. 

Proof: 

According to Definition 2, every bit of b1…bn is considered into  k 
i=1ḅxi, where k  n, and ḅx1, …, ḅxk 

are 1-bit shadows in the string ḅ1…ḅn, and thus there is  k 
i=1ḅxi = n. 

On the other hand, there is  n-k 
j=1 ḅ yj = 0, where ḅ y1, …, ḅ yn  k are 0-bit shadows. 

In total, there is  n 
i=1ḅ i = n.                                                           
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Property 2: Let {A1, …, An} be a coprime sequence, and ḅ1…ḅn be the bit shadow string of b1…bn  

0. Then the mapping from b1…bn to G =  n 
i=1 Ai

ḅ
i is one-to-one. 

Proof:  
Let b1…bn and b′1…b′n be two different nonzero bit strings, and ḅ1…ḅn and ḅ′1…ḅ′n be the two 

corresponding bit shadow strings. 
 If ḅ1…ḅn = ḅ′1…ḅ′n, then by Definition 2, there is b1…bn = b′1…b′n. 
Again, for any arbitrary bit shadow string ḅ1…ḅn, there always exists a preimage b1…bn, namely the 

mapping from b1…bn to ḅ1…ḅn is surjective. 
Thus, the mapping from b1…bn to ḅ1…ḅn is one-to-one. 

 Obviously the mapping from ḅ1…ḅn to  n 
i=1 Ai

ḅ
i is surjective. 

Again, presuppose that  n 
i=1 Ai

ḅ
i =  n 

i=1 Ai
ḅ ′

i for ḅ1…ḅn  ḅ′1…ḅ′n. 

Since {A1, …, An} is a coprime sequence, and Ai
ḅ

i either equals 1 with ḅ i = 0 or contains the same 

prime factors as those of Ai with ḅ i  0, we can obtain ḅ1…ḅn = ḅ′1…ḅ′n from  n 
i=1 Ai

ḅ
i =  n 

i=1 Ai
ḅ′

i. It is in 

direct contradiction to ḅ1…ḅn  ḅ′1…ḅ′n, which indicates that the mapping from ḅ1…ḅn to  n 
i=1 Ai

ḅ
i is 

injective [10]. 

Thus, the mapping from ḅ1…ḅn to  n 
i=1 Ai

ḅ
i is one-to-one. 

By transitivity, the mapping from b1…bn to  n 
i=1 Ai

ḅ
i is also one-to-one.                       

2.3 A Bit-pair Shadow 

To make the modulus M of the new cryptoscheme comparatively small, we will utilize the idea of a 
bit-pair string with 2 bits to 3 items. 

In this wise, the length of a coprime sequence is changed to 3n / 2, namely {A1, …, An} is substituted 
with {A1, A2, A3, …, A3n / 2 – 2, A3n / 2 – 1, A3n / 2} that may be logically orderly partitioned into n / 2 triples of 
which each comprises 3 elements: A3j – 2, A3j – 1, A3j with j  [1, n / 2]. Likewise, a non-coprime sequence 
{C1, …, Cn} is substituted with {C1, C2, C3, …, C3n / 2 – 2, C3n / 2 – 1, C3n / 2}, where (C3j – 2, C3j – 1, C3j) with j 
 [1, n /2] is acquired from (A3j – 2, A3j – 1, A3j) and other private parameters. 

Definition 3: Let {A3j – 2, A3j – 1, A3j | j = 1, …, n /2} be a coprime sequence. Orderly partition a bit 
string b1…bn into n /2 pairs B1, …, Bn / 2, where Bj with j  [1, n / 2] has four states: 00, 01, 10, and 11 
which correspond to 1, A3j – 2, A3j – 1, and A3j respectively. Then B1, …, Bn / 2 is called a bit-pair string, 
shortly B1…Bn / 2. 

Property 3: Let {A3j – 2, A3j – 1, A3j | j = 1, …, n/2} be a coprime sequence, and B1…Bn / 2 be a nonzero 

bit-pair string. Then the mapping from B1…Bn / 2 to G′ = n/2 
i=1  (A3(i – 1) + Bi

)Bi 
/

 
3 with A0 = 1 is one-to-one, 

where Bi / 3 = 0 or 1, and G′ is called a coprime subsequence product. 
Its proof is parallel to that of Property 1 in [3]. 
Definition 4: Let B1…Bn / 2 be a nonzero bit-pair string. Then Ḅi with i  [1, n / 2] is called a bit-pair 

shadow if it comes from such a rule:  
 Ḅi = 0 if Bi = 00,  
 Ḅi = 1 + the number of successive 00-pairs before Bi if Bi  00, or  
 Ḅi = 1 + the number of successive 00-pairs before Bi + the number of successive 00-pairs after the 

rightmost non-00-pair if Bi is the leftmost non-00-pair. 
For example, let B1…B4 = 10010100 or 00100011, and then Ḅ1…Ḅ4 = 2110 or 0202. 

Fact 2: Let Ḅ1…Ḅn / 2 be the bit-pair shadow string of B1…Bn  / 2  0. Then there is n/2 
i=1Ḅi = n / 2. 

Proof: 

According to Definition 4, every pair of B1…Bn / 2 is considered into  k 
i=1Ḅxi, where k  n / 2, and 

Ḅx1, …, Ḅxk are non-00-pair shadows in the string Ḅ1…Ḅn / 2, and thus there is  k 
i=1Ḅxi = n / 2. 

On the other hand, there is  n/2k 

j=1 Ḅyj = 0, where Ḅy1, …, Ḅyn / 2  k are 00-pair shadows. 

In total, there is  n/2 
i=1 Ḅ i = n / 2.                                                        

Property 4: Let {A3j – 2, A3j – 1, A3j | j = 1, …, n /2} be a coprime sequence, and Ḅ1…Ḅn / 2 be the 

bit-pair shadow string of B1…Bn / 2  0. Then the mapping from B1…Bn / 2 to G = n/2 
i=1 (A3(i – 1) + Bi

)Ḅi with 

A0 = 1 is one-to-one, where G is called an anomalous coprime subsequence product. 
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Its proof is parallel to that of Property 2 in Section 2.2. 

2.4 A Lever Function 

Definition 5: The secret parameter ℓ(i) in the key transform of a public key cryptoscheme is called a 
lever function, if it has the following features: 

 ℓ(.) is an injection from the domain {1, …, n} to the codomain   {5, …, } with  large; 
 the mapping between i and ℓ(i) is established randomly without an analytical expression; 
 an attacker has to be faced with all the arrangements of n elements in  when extracting a related 

private key from a public key; 
 the owner of a private key only needs to consider the accumulative sum of n elements in  when 

recovering a related plaintext from a ciphertext. 
The latter two points manifest that if n is large enough, it is infeasible for the attacker to search all 

the permutations of elements in  exhaustively while the decryption of a normal ciphertext is feasible 
in polynomial time in n. Thus, there are the large amount of calculation on ℓ(.) at “a public terminal”, 
and the small amount of calculation on ℓ(.) at “a private terminal”. 

Notice that  in arithmetic modulo , x represents  – x;  considering the speed of decryption, 
the absolute values of all the elements should be comparatively small;   the lower limit 5 will make 
seeking the root W from W ℓ 

(i)  Ai
–1

 Ci (% M) face an unsolvable Galois group when the value of Ai  
1201 is guessed [11]. 

Property 5 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci  (Ai W 
ℓ

 
(i))δ (% M) with ℓ(i)   = {5, 6, …, n 

+ 4} and Ai   = {2, 3, …, Þ | Þ  1201} for i = 1, …, n. Then  W (W   )  (1, ) and  x, y, z (x 
 y  z)  [1, n], 
 when ℓ(x) + ℓ(y) = ℓ(z), there is ℓ(x) + W  + ℓ(y) + W   ℓ(z) + W  (% ); 
 when ℓ(x) + ℓ(y)  ℓ(z), there always exist  

Cx  A′x W′ ℓ′(x) (% M), Cy  A′y W′ ℓ′(y) (% M), and Cz  A′z W′ ℓ′(z) (% M) 
such that ℓ′(x) + ℓ′(y)  ℓ′(z) (% ) with the constraint A′z  Þ. 

Refer to [3] for its proof. 
Notice that according to the proof of Property 5 in [3], it is not difficult to understand that when  = 

{5, 6, …, n + 4} is substituted with  = {+/5, +/7, …, +/(2n + 3)}, where “+/” means the selection 
of the “+” or “” sign, Property 5 still holds. 

Property 5 illuminates that will continued fraction attack on Ci  Ai W 
ℓ(i) (% M) by Theorem 12.19 in 

Section 12.3 of [12] be utterly ineffectual only if elements in  are suitably selected [13]. 

3 Design of the New Cryptoscheme 

Due to Lp[1/3, 1.923] = 280 with p prime and lg p  1024 [14], the shortest bit-length of a plaintext 
block should be 80. In the new scheme, to acquire provable semantical security, random 16 bits are 
appended the terminal of a plaintext block of n bits when it is encrypted.  

Let ñ = n + 16 with n = 80, 96, or 112. Additionally, two adjacent bits are orderly treated as a unit, 
namely a bit-pair string B1…Bñ/2 is utilized to represent a plaintext block b1bñ  0. 

3.1 Key Generation Algorithm 

Considering decryption speed, the absolute values of elements of  should be as small as possible, 
and every three successive elements of  are treated as a triple according to 2 bits to 3 items. 

Let  = {2, …, Þ}, where Þ = 937, 991, or 1201 corresponding to ñ = 96, 112, or 128 separately. 
Let ĩ = lg M = 464, 544, or 640 corresponding to ñ = 96, 112, or 128 separately. 

Assume that Āj is the maximum in (A3j – 2, A3j – 1, A3j)  j  [1, ñ / 2]. 
The following algorithm is generally employed by the owner of a key pair. 
INPUT: the integer n; the integer ĩ; the prime Þ. 

S1: Let ñ  n + 16,   {2, …, Þ}; 
yield the first ñ primes ṗ1, …, ṗñ in the natural number set; 
yield   {(+/(6j1), +/(6j+1), +/(6j+3))Æ | j=1, …, ñ /2}. 
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S2: Produce an odd coprime {A1, , A3ñ/2 | Ai  } = {A3j – 2, A3j – 1, A3j | j = 1, …, ñ/2}; 
arrange Ā1, …, Āñ / 2 to Āx1, , Āxñ /2 in descending order. 

S3: Find a prime M > Āx1

ñ
 
/

 
4 + 1

 ñ / 4 
i = 2Āxi making lg M = ĩ and 

 

k   
i = 1 ṗi

e
i | , where k meets  

k   
i = 1 ei  210 and ṗk < ñ. 

S4: Produce pairwise distinct (ℓ(3j – 2), ℓ(3j – 1), ℓ(3j))  for j = 1, , ñ /2. 
S5: Stochastically pick W, δ  (1, ) making W   2n – 20 and gcd(δ,  ) = 1. 
S6: Compute Ci  (Ai W ℓ

 
(i))δ % M for i = 1, , 3ñ /2. 

OUTPUT: a public key ({C1, …, C3ñ/2}, M); a private key ({A1, …, A3ñ/2}, W, δ, M). 
The lever function {ℓ(1), …, ℓ(ñ/2)} is discarded but must not be divulged. Notice that 
 at S1,  = {(+/(6j  1), +/(6j + 1), +/(6j + 3))Æ | j = 1, …, ñ/2} indicates that  is one of 

(3!)ñ/223ñ/2 potential sets consisting of 3-tuple elements, where “” means the selection of the “+” or 

“” sign, and the subscript Æ means that (+/(6j1), +/(6j+1), +/(6j+3))Æ is a permutation of 
(+/(6j1), +/(6j+1), +/(6j+3)); 
 at S2, gcd(A3i – 2, A3i – 1, A3i)  1 (i  [1, ñ /2]) is allowed ― (33, 32, 3) for example since only one 

of three elements will occur in the product G; 

 at S3, the inequation M >Āx1

ñ
 
/

 
4

 
+

 
1ñ/4 

i=2Āxi assures that a ciphertext can be decrypted correctly; 

 at S5, let W  g / F (% M), then W  =  / gcd(,  / F) [11], where F  2n – 20 is a factor of , and 
g is a generator by Algorithm 4.80 in Section 4.6 of [14]. 

Definition 6: Given ({C1, …, C3ñ / 2}, M), seeking the original ({A1, …, A3ñ / 2}, {ℓ(1), …, ℓ(3ñ /2)}, 
W, δ) from Ci  (Ai W ℓ

 
(i))δ (% M) with Ai   = {2, …, Þ | Þ  1201} and ℓ(i) from  = {(+/(6j1), 

+/(6j+1), +/(6j+3))P | j = 1, …, ñ /2} for i = 1, …, 3ñ /2 is referred to as a multivariate permutation 
problem (MPP). 

Property 6: The MPP Ci  (Ai W ℓ
 
(i))δ (% M) with Ai   = {2, …, Þ | Þ  1201} and ℓ(i) from  = 

{(+/(6j1), +/(6j+1), +/(6j+3))P | j=1, …, ñ /2} for i = 1, …, 3ñ /2 is computationally at least 
equivalent to the DLP in the same prime field. 

Refer to Section 4.1 of [3] for its proof. 

3.2 Encryption Algorithm 

This algorithm is employed by a person who wants to encrypt plaintexts. 
INPUT: a public key ({C1, …, C3ñ / 2}, M);  

the bit-pair string B1…Bn / 2 of a plaintext block b1bn  0. 
Notice that if the number of 00-pairs in B1…Bn/2 is larger than n/4, let b1…bn = b1…bn in order 

that a related ciphertext can be decrypted conforming to the constraint on M. 
S1: Yield a random bit string bn + 1…bñ appended to b1bn; 

form B1…Bñ / 2 until the number of 00-pairs  ñ /4. 
S2: Set C0  1, k  0, i  1,   0. 
S3: If Bi = 00 then let k  k + 1, Ḅi  0 

else { 
let Ḅi  k + 1, k  0;  
if  = 0 then   i else null. 

} 
S4: Let i  i + 1;  

if i  ñ /2 then goto S3. 
S5: If k  0 then let Ḅ  Ḅ + k. 
S6: Stochastically produce r1rñ / 2  {0, 1}ñ / 2;  

set r  1. 

S7: Compute Ḡ  ñ / 2 
i = 1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i % M. 

OUTPUT: a ciphertext Ḡ. 
Evidently, a different ciphertext will be outputted every time an identical plaintext is inputted 

repeatedly. The identical plaintext may correspond to at most 2ñ/42ñ-n different ciphertexts since ñ/2 
bit-pairs may be interlaced with a 00-pair and a non-00-pair, and bn+1…bñ is produced randomly. It 
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will take the running time of O(ñ2ñ 
/

 
22ñ 

-
 
nlg2M) bit operations exhaustively to search all the possible 

ciphertexts of a plaintext. 

Note a JUOAN ciphertext ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) is different from a Naccache-Stern 

ciphertext c   

n  
i=1 vi

b
i (% M) [15], where vi  i

1
 
/

 
δ (% M) with i prime is a public key. 

Definition 7: Given ({C1, …, C3ñ / 2}, M) and Ḡ, seeking B1…Bñ / 2 from Ḡ1  ñ/2 
i=1  (C3(i – 1) + Bi

)Bi
/3 (% 

M) with C0 = 1 is referred to as a subset product problem (SPP), where B1…Bñ / 2 is the bit-pair string of 
b1bñ  0. 

Property 7: The SPP Ḡ1  ñ/2 
i=1 (C3(i – 1) + Bi

)Bi
/3 (% M) with C0 = 1 is computationally at least 

equivalent to the DLP in the same prime field, where B1…Bñ/2  0 is a bit-pair string. 

Definition 8: Given ({C1, …, C3ñ / 2}, M) and Ḡ, seeking B1…Bñ / 2 from Ḡ  ñ/2 
i=1  (C3(i – 1) + Bi

)Ḅi (% M) 

or Ḡ  ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) with C0 = 1 and r1rñ / 2 a random bit string is referred to 

as an anomalous subset product problem (ASPP), where Ḅ1…Ḅñ/2 is the bit-pair shadow string of 
B1…Bñ / 2 corresponding to b1…bñ  0. 

Property 8: The ASPP Ḡ  ñ/2 
i=1 (C3(i – 1) + Bi

)Ḅi (% M) with C0 = 1 is computationally at least equivalent 

to the DLP in the same prime field, where Ḅ1…Ḅñ/2 is the bit-pair shadow string of B1…Bñ/2  0. 

Property 9: The ASPP Ḡ  ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) with C0 = 1 and r1rñ/2 a random 

bit string is computationally at least equivalent to the DLP in the same prime field, where Ḅ1…Ḅñ/2 is 
the bit-pair shadow string of B1…Bñ/2  0. 

See Section 6 for the proofs of Property 7, 8, and 9. 

3.3 Decryption Algorithm 

This algorithm is employed by a person who holds a private key and wants to decrypt ciphertexts. 
INPUT: a private key ({A1, …, A3ñ / 2}, W, δ, M); a ciphertext Ḡ. 

It should be noted that due to 2|ñ/2 
i=1Ḅi and 2łℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅi)+Bi)) for i  [1, ñ/2] with ℓ(0) 

= 0, ḵ = ñ/2 
i=1Ḅi ℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅi)+Bi)) must be even. 

S1: Compute Z0  Ḡ δ1

 % M; set Z1  Z0, ṣ  0. 
S2: If 2 | Zṣ then {do Zṣ  Zṣ W 2(–1)ṣ % M; goto S2.} 
S3: Set B1Bn / 2  0, j  0, k  0, ṽ  0, i  1, G  Zṣ. 
S4: If (A3 i – j)

ṽ +
 
1 | G then {let ṽ  ṽ + 1; goto S4.} 

S5: Let j  j + 1; if ṽ = 0 and j  2 then goto S4. 
S6: If ṽ  = 0 then 

S6.1: let k  k + 1, i  i + 1 
else 

S6.2: compute G  G / (A3 i – j)
ṽ; 

S6.3: if k > 0 or ṽ  i then let Bi  3 – j, i  i + 1 
else let Bi + ṽ – 1  3 – j, i  i + ṽ ; 

S6.4: set ṽ  0, k  0. 
S7: If i  ñ /2 and G  1 then set j  0, goto S4. 
S8: If G  1 then {set ṣ  ṣ ; do Zṣ  ZṣW 2(–1)ṣ % M; goto S2.} 
S9: Extract B1Bn / 2 from B1Bñ / 2. 
OUTPUT: a related plaintext B1Bn / 2, namely b1bn. 
Notice that only if Ḡ is a true ciphertext, can the algorithm always terminate normally, and b1bn 

will be original although r1rñ/2 is brought into an encryption process. 

3.4 Running Times of the Algorithms 

The running time of an algorithm is measured in the number of bit operations [14], and it has an 
asymptotic implication. According to [14], a modular addition will take O(lgM) bit operations (shortly, 
bos), and a modular multiplication will take O(2lg2M) bos. 
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3.4.1  Running Time of the Key Generator 

In the key generator, the steps which exert dominant effects on running time are S5 and S6. 
At S5, seeking W namely seeking g will take O(6(lnln)lg3M) bos [14]. For every i, S6 contains 

one modular power (AiW
ℓ(i))δ, where W ℓ(i) will take 2lg(3ñ /2) modular multiplications which is subject 

to one modular power since ñ is far smaller than M. Thus, the running time of the key generator is 
about O((6lnln + 4(3ñ /2))lg3M) = O(6(lnln + ñ)lg3M) bos. 

3.4.2  Running Time of the Encryption Algorithm 

In the encryption algorithm, the dominant step is S7. 

Due to ñ /2 
i=1 Ḅ i = ñ /2, S7 contains at most ñ /2 modular multiplications. Thus, the running time of the 

encryption algorithm is O(ñ lg2M) bos. 

3.4.3  Running Time of the Decryption Algorithm 

In the decryption algorithm, the dominant step is S2 which pairs with S8 to form a loop. S1 of a 
modular power is subject to the loop S2  S8. 

It is easy to see that the number of times of executing the loop S2  S8 which mainly contains a 

modular multiplication is ḵ = ñ /2 
i=1 Ḅ iℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅ i)+Bi)), where Ḅ i is relevant to a 

plaintext block, and ℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅ i)+Bi)) is relevant to the set  = {(+/(6j1), 
+/(6j+1), +/(6j+3))P | j=1, …, ñ /2} which is indeterminate. Therefore, it is very difficult accurately 
to know the value of ḵ. 

When a plaintext block B1…Bñ / 2 contains ñ /4 successive 00-pairs, we may obtain the maximal 
value of ḵ on condition that every ℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅ i)+Bi)) has the same operating sign. 

The maximal value of ḵ is 
ḵ = (ñ /4+1)(2(3ñ /2)+3) + (2(3ñ /2)3) + (2(3ñ /2)9)+ … 

     +(2(3ñ /2)+3  6(ñ /41)) 
       = (3 / 4)(ñ + 4)(ñ + 1) + (3 / 16) (3ñ + 4)(ñ  4) 
       = (3 / 16)ñ(7ñ  + 12). 

Considering that ℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅ i)+Bi)) may be positive or negative, the minimal value 
of ḵ will be 0 with a suitable plaintext block B1…Bñ / 2. 

Thus, the simply expected value of ḵ is (3 / 32)ñ (7ñ + 12)  (21 / 32)ñ 2. 
Again considering that W –2 and W 2 is multiplied alternately every time, the simply expected value 

of ḵ should be 2(21 / 32)ñ 2  ñ 2. 
In summary, the simply expected time of the decryption algorithm is O(2ñ2lg2M) bos. 
Practically, because the possible values of ḵ (including the repeated) will distribute in the integral 

interval [0, (3/16)ñ(7ñ + 12)] which includes the points 0, 2, 4, …, (3 /16)ñ(7ñ + 12), and is the 
maximal possible range, and the probability that ḵ takes large integers is comparatively small, the 
concrete running time of a decryption will be far smaller than O(2ñ 2lg2M) bos. 

4 Correctness and Uniqueness 

4.1 Correctness of the Decryption Algorithm 

Since ( * 
M , ·) is an Abelian group, namely a commutative group, ḵ  [1, ] there is W 

ḵ
 (W –1)ḵ  W ḵ 

(W ḵ
 )–1  1 (% M), where W  [1, ] is any arbitrary integer. 

Fact 3: Let ḵ = ñ/2 
i=1 Ḅi ℓ(ri(3(i–1)+Bi)+ri(3(i–Ḅi)+Bi)) %  with ℓ(0) = 0, where Ḅ1…Ḅñ/2 is the 

bit-pair shadow string of B1…Bñ/2 corresponding to b1…bñ  0, and r1rñ/2 is a random bit string. Then 

Ḡ
δ

 

1

(W –1)ḵ  ñ/2 
i=1 (Ari(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M). 

Proof: 
Let b1bñ, namely B1Bñ / 2 be a plaintext of ñ bits. Additionally, let A0 = 1. 

According to the key generator, the encryption algorithm, and ñ/2 
i=1Ḅi = ñ/2, there is 

         Ḡ  ñ / 2 
i = 1 (Cri(3(i – 1) + Bi) +ri(3(i – Ḅi) + Bi))

Ḅ
i 
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 ñ / 2 
i = 1 ((Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi) Wℓ(r

i
(3(i – 1) + B

i
) +r

i
(3(i –Ḅ

i
) + B

i
)))δ)Ḅ i 

        W (ñ / 2 

i=1
Ḅ

i
ℓ(r

i
(3(i – 1) + B

i
) +r

i
(3(i –Ḅ

i
) + B

i
)))δñ /2 

i=1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))
δḄ

i 

        Wḵ δñ / 2 
i = 1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))

δḄ
i (% M). 

Further, raising either side of the above congruence to the δ–1-th yields 

         Ḡ
δ1

  (Wḵ δ
 ñ / 2 

i = 1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))
δḄ

i)δ
1

 

 Wḵ
 ñ / 2 

i = 1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))
Ḅ

i (% M). 

Multiplying either side of the just above congruence by (W 
–1)ḵ yields  

Ḡ
δ1

(W –1)ḵ  W 
ḵ
 ñ / 2 

i = 1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))
Ḅ

i (W 
–1)ḵ 

        ñ / 2 
i = 1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))

Ḅ
i  G (% M). 

Clearly, the above process also gives a method of seeking G at one time.                     
Notice that in practice, ḵ is unknowable in advance.  
However, since |ḵ | < ñ (2(3ñ / 2) + 3) / 2 = 3ñ (ñ + 1) / 2 is comparatively small, we may search ḵ 

heuristically by multiplying W–2 or W2 % M and judging whether G = 1 after it is divided exactly by 
some (A3 i – j)

ṽ. It is known from the decryption algorithm that the original B1Bñ/2 will be acquired at 
the same time the condition G = 1 is satisfied. 

4.2 Uniqueness of a Plaintext Solution 

Because the public key {C1, …, C3ñ/2} is a non-coprime sequence, the mapping from B1Bñ/2 to Ḡ = 

ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i % M is theoretically many-to-one. It might possibly result in the 

nonuniqueness of a plaintext solution B1Bñ/2 when Ḡ is being unveiled. 

Fact 4: The probability that a solution for Ḡ = ñ/2 
i=1 (Cri(3(i – 1) + Bi)+ri(3(i – Ḅi) + Bi))

Ḅ
i % M is nonunique is 

nearly zero, where the solution is namely a plaintext. 
Proof: 
Suppose that a ciphertext Ḡ can be obtained respectively from two different bit-pair strings B1Bñ / 2 

and B′1B′ñ / 2. Then, 

Ḡ  ñ /2 
i=1 (Cri(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))

Ḅ
i  ñ /2 

i=1 (Cri(3(i – 1) + B ′i) +ri(3(i –Ḅ ′i) + B ′i))
Ḅ ′

i (% M). 

That is, 

     ñ /2 
i=1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi)W

ℓ(r
i
(3(i – 1) + B

i
) +r

i
(3(i –Ḅ

i
) + B

i
)))δḄ i 

 ñ /2 
i=1 (Ari(3(i – 1) + B ′i) +ri(3(i –Ḅ ′i) + B ′i)W

ℓ(r
i
(3(i – 1) + B ′

i
) +r

i
(3(i –Ḅ ′

i
) + B ′

i
)))δḄ ′i (% M). 

Further, there is 

W 
ḵ δñ /2 

i=1 (Ari(3(i–1)+Bi)+ri(3(i–Ḅi)+Bi))
δḄ

i  W 
ḵ ′

 
δñ /2 

i=1 (Ari(3(i–1)+B ′i)+ri(3(i–Ḅ ′i)+B ′i))
δḄ ′

i (% M), 

where ḵ = ñ /2 
i=1 Ḅi ℓ(ri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi)), and ḵ′ = ñ /2 

i=1 Ḅ′iℓ(ri(3(i – 1) + B′i) + ri(3(i – Ḅ′i) + 

B′i)) %  with ℓ(0) = 0. 
Raising either side of the above congruence to the δ–1-th power yields 

W 
ḵ ñ /2 

i=1 (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))
Ḅ

i  W 
ḵ ′

 ñ /2 
i=1 (Ari(3(i – 1) + B ′i) +ri(3(i –Ḅ ′i) + B ′i))

Ḅ ′
i (% M). 

Without loss of generality, let ḵ  ḵ ′. Because ( * 
M , ·) is an Abelian group, there is 

W ḵ – ḵ ′  ñ /2 
i=1 (Ari(3(i – 1) + B ′i) +ri(3(i –Ḅ ′i) + B ′i))

Ḅ ′
i (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))

–Ḅ
i (% M). 

Let   ñ /2 
i=1 (Ari(3(i – 1) + B ′i) +ri(3(i –Ḅ ′i) + B ′i))

Ḅ ′
i (Ari(3(i – 1) + Bi) +ri(3(i –Ḅi) + Bi))

–Ḅ
i (% M), namely  

  W ḵ – ḵ ′ (% M). 
This congruence signifies when the plaintext B1Bñ / 2 is not unique, the value of W must be relevant 

to . The contrapositive assertion equivalent to it is that if the value of W is irrelevant to , B1Bñ / 2 
will be unique. Thus, we need to consider the probability that W takes a value relevant to . 

If an adversary tries to attack an 80-bit symmetric key through the exhaustive search, and a 
computer can verify trillion values per second, then it will take 38334 years for the adversary to verify 
all the potential values. Hence, currently 80 bits are quite enough for the security of a symmetric key. 

B1Bñ/2 contains ñ bits which indicates ñ/2 
i=1 (Cri(3(i–1)+Bi)+ri(3(i–Ḅi)+Bi))

Ḅ
i has 2ñ potential values, and 

thus the number of potential values of  is at most 2ñ  2ñ. Notice that since A1
–1, , A3ñ/2

–1 are not 
necessarily coprime, some values of  may possibly occur repeatedly. 
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Because |ḵ  ḵ′| < 3ñ(ñ + 1)  47601  216 with ñ  128, and W has at most 216 solutions to every 
value of , the probability that W takes a value relevant to  is at most 216

 22ñ
 / M.  

When ñ  96, there is 216
 22ñ

 / M  2208
 / 2464 = 1 / 2256, and close to zero, where M is subject to lgM 

= 464, 544, or 640 corresponding with ñ = 96, 112, or 128.                                   

5 Security Analysis of a Private Key 

In the below cryptanalysis, we suppose that the integer factorization problem (IFP) N = pq with 
lgN < 1024 [4], the discrete logarithm problem (DLP) y  g x (% p) with lg  p < 1024 [16][17], and 

the subset sum problem (SSP) of low density s   n 
i=1ci bi (% M) with D  n / lgM < 1 and n < lgM 

< 1024 [9] can be solved in tolerable subexponential time or in polynomial time [18][19]. 
Notice that the structure of the set  consisting of triples has no change in essence compared with 

the  in [3]. 

5.1 Attack by Interaction of the Key Transform Items 

In the key transform Ci  (Ai W  ℓ(i))δ (% M), the parameters Ai   = {2, 3, …, Þ | Þ = 937, 991, or 
1201} and ℓ(i) from  = {(+/(6j1), +/(6j+1), +/(6j+3))Æ | j  =  1, …, ñ /2} seem vulnerable. 

5.1.1  Eliminating W through ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) 

 x1, x2, y1, y2  [1, 3ñ /2], assume that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2). 
Let Gz  Cx

1
Cx

2
 (Cy

1
Cy

2
)–1 (% M), namely 

Gz  (Ax
1 Ax

2
 (Ay

1 Ay
2
)–1)δ (% M). 

If an adversary divines the values of Ax
1
, Ax

2
, Ay

1
, Ay

2
  , he may compute δ through a discrete 

logarithm in LM [1 / 3, 1.923] time, where M < 2640. 
However, a concrete  is one of (233!)ñ / 2 potential sets, indeterminate, and unknown due to    = 

ñ /2 and  = {(+/(6j1), +/(6j+1), +/(6j+3))P | j=1, …, ñ /2}. 
For example, assume that ℓ(x1) + ℓ(x2) = 5 + 11, and ℓ(y1) + ℓ(y2) = 7 + 9, then there is ℓ(x1) + ℓ(x2) 

 ℓ(y1) + ℓ(y2). Therefore, among ℓ(1), …, and ℓ(3ñ /2), there does not necessarily exist ℓ(x1) + ℓ(x2) = 
ℓ(y1) + ℓ(y2). 

The above example illustrates that to determinate the existence of ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2), the 
adversary must first determinate the constitution of the set , which will have O((233!)ñ / 2) time 
complexity. 

5.1.2  Eliminating W through the W -th Power 

Owing to lg M = 544 or 640,  can be factorized in tolerable subexponential time. Again owing to 

 k 
i=1ṗi

e
i |  and  

k 
i=1 ei  210 with ṗk < ñ, W can be divined in the time of about the 210 magnitude. 

Raising either side of Ci  (Ai W ℓ
 
(i)) 

δ % M to the W-th power yields 
Ci 

W  (Ai)
δ W (% M). 

Let Ci  g 
u

i (% M), and Ai  g 
v

i (% M), where g is a generator of ( * 
M , ·). Then 

ui W  vi W δ (% ) 
for i = 1, …, 3ñ /2. Notice that ui  vi δ (% ) due to W | . 

The above congruence looks to be the MH transform [9]. Actually, {v1 W, …, v3ñ / 2 W} is not a 
super increasing sequence, and moreover there is not necessarily lg (ui W) = lg . 

Because viW  [1,  ] is stochastic, the inverse δ–1 %  not need be close to the minimum 
 / (ui W), 2 / (ui W), …, or (ui W – 1) / (ui W). Namely δ–1 may lie at any integral position in the 
interval [k / (ui W), (k + 1) / (ui W)], where k = 0, 1, …, ui W – 1, which illustrates the 
accumulation points of minima do not exist. Further observing, in this case, when i traverses the 
interval [2, 3ñ /2], the number of intersections of the intervals including δ–1 is likely the max of 
(u2 W, …, u3ñ / 2W) which is promisingly close to . Therefore, the Shamir attack by the 
accumulation point of minima is fully ineffectual [20]. 

Even though find out δ 

–1 by the Shamir attack method, because each of vi has W solutions, the 
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number of potential sequences {gv
1, …, gv

3ñ / 2} is up to W 3ñ / 2. Due to needing to verify whether 

{gv
1, …, gv

3ñ / 2} is a coprime sequence for each different sequence {v1, …, v3ñ / 2}, the number of coprime 

sequences is in direct proportion to W 3ñ / 2. Hence, the initial {A1, …, A3ñ / 2} cannot be determined in 
subexponential time. Further, the value of W cannot be computed, and the values of W and δ–1 cannot 
be verified in subexponential time, which indicates that MPP can also be resistant to the attack by the 
accumulation point of minima. 

Additionally, an adversary may divine value of Ai in about  time, where i  [1, 3ñ /2], and 
compute δ by ui W  vi Wδ (% ).  

However, Owing to W | , the equation will have W solutions. Therefore, the time complexity of 
finding the original δ is at least 

Ŧe = (3ñ /2) LM [1 / 3, 1.923] + 210
  W 

       = 29(3ñ)LM [1 / 3, 1.923] + 210210
 2n – 20 

        29(3ñ)LM [1 / 3, 1.923] + 2n > 2n. 
It is exponential in n with n = 80, 96, or 112. 

5.2 Attack by a Certain Single Ci 

Assume that there is only a solitary Ci = (Ai W ℓ(i))δ % M ― i = 1 for example, and other Ci′s (i = 
2, …, 3ñ /2) are unknown for adversaries. 

Through divining the values of A1  , ℓ(1) from , and δ coprime to , the secrete parameters W  
(1, ) can be computed. Thus, the number of possible values of W will be larger than   (  / ln) > 
2ñ, which manifests that the original (A1, ℓ(1), W, δ) cannot be determined in subexponential time. 

Evidently, if g1  A1W
ℓ(1) (% M) is a constant, solving C1 = g1

δ % M for δ is equivalent to the DLP. 
Factually, g1 is not a constant, and at present, the time complexity of seeking the original g1, namely 
A1W

ℓ(1) will be O(M) > O(2ñ). 
In summary, the time complexity of inferring a related private key from a public key is at least 

O(2ñ). 

6 Security Analysis of a Plaintext 

The security of a plaintext depends on the ASPP Ḡ  ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) with C0 = 

1 and r1rñ/2 a random bit string. 
Definition 9: Let A and B be two computational problems. A is said to reduce to B in polynomial 

time, written as A  

P 
T  B, if there is an algorithm for solving  which calls, as a subroutine, a 

hypothetical algorithm for solving B, and runs in polynomial time, excluding the time of the algorithm 
for B [14][21]. 

Definition 10: Let A and B be two computational problems. If A  

P 
T  B and B  

P 
T  A, then A and B are 

said to be computationally equivalent, written as A = 

P 
T  B [14][21]. 

Definition 9 and 10 suggest a reductive proof method called polynomial time Turing reduction 
(PTR) [21]. 

Naturally, we will enquire whether A < 

P 
T  B exists or not. The definition of A < 

P 
T  B may possibly be 

given theoretically, but the proof of A < 

P 
T  B is not easy in practice. 

Let Ĥ(y = f(x)) represent the complexity or hardness of solving the problem y = f(x) for x [18]. 

6.1 Proofs of Three Properties 

 The proof of Property 7. 
Proof: 
For clear explanations, we extend B1…Bñ / 2 to a bit string b′1…b′3ñ / 2 by the following rule for i = 

1, …, ñ / 2: 
 when Bi = 0, let b′3(i – 1) + 1 = b′3(i – 1) + 2 = b′3(i – 1) + 3 = 0;  
 when Bi  0, let b′3(i – 1) + 1 = b′3(i – 1) + 2 = b′3(i – 1) + 3 = 0, and b′3(i – 1) + Bi

 = 1. 

Hence, we have the equivalent Ḡ1   3ñ /2 
i=1 Ci

b′
i (% M). 
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The form of Ḡ1 here is similar to that of Ḡ1 in [3]. 

Especially, define Ḡ1   3ñ /2 
i=1 C 23ñ / 2  ib′

i   3ñ /2 
i=1 (C 23ñ / 2  i

)b′
i (% M) when C1 =  = C3ñ/2 = C. 

Obviously,  3ñ /2 
i=1 Ci

b′
i = L M+Ḡ1. Owing to L  [1, ], deriving the non-modular product  3ñ /2 

i=1 Ci
b′

i 

from Ḡ1 is infeasible, which means inferring b′1…b′3ñ / 2 from Ḡ1 is not a factorization problem. 

Assume that Ōs(Ḡ1, C1, , C3ñ/2, M) is an oracle on solving Ḡ1  3ñ/2 
i=1 Ci

b′
i (% M) for b′1…b′3ñ/2. 

Let y  g x (% M) be of the DLP, where g is a generator of ( * 
M, ·), and the binary form of x is 

ḃ1…ḃ3ñ / 2, namely  

y   3ñ /2 
i=1 (g 

23ñ / 2  i
)ḃ i (% M). 

Then, by calling Ōs(y, g 
23ñ / 2  1

, , g, M), ḃ1…ḃ3ñ / 2 namely x can be found. 
According to Definition 9, there is 

Ĥ(y  g x (% M))  

P 
T  Ĥ(Ḡ1  ñ / 2 

i = 1 (C3(i – 1) + Bi
)Bi

/ 3 (% M)), 

namely the SPP is at least equivalent to the DLP in the same prime field in complexity.          
 The proof of Property 8. 
Proof: 
For clear explanations, we extend Ḅ1…Ḅñ / 2 to a nonrigid shadow string ḅ′1…ḅ′3ñ / 2 by the following 

rule for i = 1, …, ñ / 2: 
 when Ḅi = 0, let ḅ′3(i – 1) + 1 = ḅ′3(i – 1) + 2 = ḅ′3(i – 1) + 3 = 0; 
 when Ḅi  0, let ḅ′3(i – 1) + 1 = ḅ′3(i – 1) + 2 = ḅ′3(i – 1) + 3 = 0, and ḅ′3(i – 1) + Bi

 = Ḅi. 

Hence, we have the equivalent  

Ḡ   3ñ /2 
i=1 Ci

ḅ′
i (% M). 

The form of Ḡ here is similar to that of Ḡ in [3]. 

Assume that Ōa(Ḡ, C1, , C3ñ / 2, M) is an oracle on solving Ḡ   3ñ /2 
i=1 Ci

ḅ′
i (% M) for ḅ′1…ḅ′3ñ / 2, 

where ḅ′1…ḅ′3ñ / 2 is a nonrigid shadow string corresponding to Ḅ1…Ḅñ / 2. 
Especially, define 

Ḡ   3ñ /2 
i=1 Cñ

3ñ /2  iḅ′
i   3ñ /2 

i=1 (Cñ
3ñ /2  i

)ḅ′i (% M) 

when C1 =  = C3ñ / 2 = C. Notice that due to ḅ′i  ñ / 2, there must be ḅ′i < ñ. 

Let Ḡ1   3ñ /2 
i=1 Ci

b′
i (% M) be of the SPP, where b′1…b′3ñ / 2 corresponds to B1…Bñ / 2. 

Because Ḡ1   3ñ /2 
i=1 Ci

b′
i (% M) and Ḡ   3ñ /2 

i=1 Ci
ḅ′

i (% M) with 0  b′i  ḅ′i have the same structure, by 

calling Ōa(Ḡ1, C1, , C3ñ / 2, M), b′1…b′3ñ / 2 can be found. 

According to Definition 9, there is Ĥ(Ḡ1  3ñ/2 
i=1 Ci

b′
i (% M))  

P 
T Ĥ(Ḡ  3ñ/2 

i=1 Ci
ḅ′

i (% M)). 

Further by transitivity, there is 

Ĥ(y  gx (% M))  

P 
T  Ĥ(Ḡ  ñ /2 

i=1 (C3(i – 1) + Bi
)Ḅ i (% M)), 

namely the ASPP Ḡ  ñ /2 
i=1 (C3(i – 1) + Bi

)Ḅi (% M) is at least equivalent to the DLP in the same prime field 

in computational complexity.                                                           
 The proof of Property 9. 
Proof: 
Let r1rñ / 2 = 1…1, then the ASPP 

Ḡ  ñ /2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) 

is reduced to the ASPP Ḡ  ñ /2 
i=1 (C3(i – 1) + Bi

)Ḅ i (% M). 

By Property 8 and the transitivity, there exists 

Ĥ(y  gx (% M))  

P 
T  Ĥ(Ḡ  ñ /2 

i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))
Ḅ

i (% M)), 

namely the ASPP is at least equivalent to the DLP in the same prime field in complexity.           

6.2 Resisting LLL Lattice Basis Reduction 

We know that after a lattice basis is reduced through the LLL algorithm, the final reduced base will 
contain the shortest or approximately shortest vectors, but among them does not necessarily exist the original 
solution to a subset sum problem because only if  
 the solution vector for the SSP is the shortest, and 
 the shortest vector is unique in the lattice, 

 11



> http://eprint.iacr.org/2013/394.pdf < 

will the original solution vector appear in the reduced base with large probability. 
In the new cryptoscheme, there are ñ = 96, 112, or 128 and lg M = 464, 544, or 640. Under the 

circumstances, the DLP and IFP can be solved in tolerable subexponential time, namely the DLP and 
IFP cannot resist the attack of adversaries. 

We first consider the ASPP Ḡ  ñ /2 
i=1 (C3(i – 1) + Bi

)Ḅ i (% M). 

For convenience, extend Ḅ1…Ḅñ/2 to ḅ′1…ḅ′3ñ/2 by the following rule for i = 1, …, ñ / 2: 
 when Ḅi = 0, let ḅ′3(i – 1) + 1 = ḅ′3(i – 1) + 2 = ḅ′3(i – 1) + 3 = 0; 
 when Ḅi  0, let ḅ′3(i – 1) + 1 = ḅ′3(i – 1) + 2 = ḅ′3(i – 1) + 3 = 0, and ḅ′3(i – 1) + Bi

 = Ḅi. 

In this way, the ASPP Ḡ  ñ/2 
i=1 (C3(i – 1) + Bi

)Ḅi (% M) is converted into 

Ḡ  3ñ/2 
i=1 Ci

ḅ′
i (% M). 

Let g be a generator of the group ( * 
M, ·). 

Let  
C1  g 

u
1 (% M), …, C3ñ / 2  g 

u
3ñ / 2 (% M), and Ḡ  g 

v (% M). 

Then, through a conversion in subexponential time, seeking B1…Bñ / 2 from Ḡ is equivalent to 
seeking ḅ′1…ḅ′3ñ / 2 from the congruence 

u1 ḅ′1 +  + u3ñ / 2 ḅ′3ñ / 2  v (%  ),                          (3) 
where v may be substituted with v + k  along with k  [0, 3ñ /2] [5].  

Similar to Section 1, {u1, …, u3ñ / 2} is called a compact sequence due to every ḅ′i  [0, ñ /4 + 1] [6], 
and solving Equation (3) for ḅ′1…ḅ′3ñ / 2 is called an ASSP [3]. 

May also convert this ASSP into a SSP through splitting ui into bits, and thus according to ḅ′i  [0, 

ñ /4 + 1], the density of the related ASSP knapsack is defined as D =  3ñ /2 
i=1  lg(ñ /4 + 1) / lg M = 

(3ñ /2)lg(ñ /4 + 1) / lg M. Namely, 
D = 3ñlg(ñ /4 + 1) / (2lg M).                          (4) 

which is slightly different from Formula (2). 
Concretely speaking, in the new cryptoscheme, there are 
D = 144  5 / 464  1.5517 > 1 for ñ  = 96 and lg M = 464; 
D = 168  5 / 544  1.5441 > 1 for ñ  = 112 and lg M = 544; 
D = 192  6 / 640  1.8000 > 1 for ñ  = 128 and lg M = 640. 
Therefore, Equation (3) does represent an ASSP of high density, which indicates that many different 

subsets will have the same sum, and probability that the original solution vector will occur in the final 
reduced lattice basis is nearly zeroth. Meanwhile, our experiment demonstrates that the original 
solution vector does not occur in the final reduced base [22]. 

Because Ḡ  ñ /2 
i=1 (C3(i – 1) + Bi

)Ḅ i (% M) is only a special case of the ciphertext 

Ḡ  ñ /2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M), 

the latter is also able to resist the LLL lattice basis reduction. 

6.3 Avoiding Meet-in-the-middle Attack 

Meet-in-the-middle dichotomy was first developed in 1977 [23]. Section 3.10 of [14] puts forward a 
meet-in-the-middle attack on a subset sum problem. It is not difficult to understand that the time 
complexity of the above algorithm is O(n2n / 2). 

Likewise, currently the versatile meet-in-the-middle dichotomy may be utilized to assault the ASSP 

Ḡ  ñ /2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) with entries  

(ñ /4 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i, (r1, …, rñ / 4), (B1, …, Bñ / 4)) 

for (r1, …, rñ/4)  {0, 1}ñ/4 and (B1, …, Bñ/4)  {00, 01, 10, 11}ñ/4 when Bñ/4  00 and Bñ/2  00 which 
occurs with probability 9 / 16 = 0.5625. Obviously, the random bit string r1rñ/4 extends the scope of 
exhaustive search. Further, It is easy to see that the running time of this attack task is O(ñ2ñ/22ñ/4lg2M) = 
O(ñ23ñ/4lg2M) bit operations. 

Concretely speaking, 
when ñ  = 96 namely n = 80 with lg M = 464, Ŧm = 2723  96 / 4(29)2 = 297 > 280 bos; 
when ñ = 112 namely n = 96 with lg M = 544, Ŧm = 2723  112 / 4(210)2 = 2111 > 296 bos; 
when ñ = 128 namely n = 112 with lg M = 640, Ŧm = 2823  128 / 4(210)2 = 2124 > 2112 bos. 
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Therefore, the new cryptoscheme can resist the meet-in-the-middle attack. 

6.4 Avoiding Adaptive-chosen-ciphertext Attack 

Most of public key cryptoschemes may probably be faced with adaptive-chosen-ciphertext attack 
[24]. However, It is lucky the Cramer-Shoup asymmetric encryption scheme is very indistinguishable 
and nonmalleable [25], and proven to be secure against the adaptive-chosen-ciphertext attack under the 
cryptographic assumptions [26]. So is the OAEP+ scheme [27]. 

6.4.1   Indistinguishability of Ciphertexts 

In the encryption process of a JUOAN plaintext,  a random padding string of ñ  n bits is appended to 
the terminal of the JUOAN plaintext, which changes the original plaintext to an extended plaintext, and  a 
random permutation string of ñ /2 bits is introduced into the arrangement of bit-pairs of the extended 
plaintext, which is equivalent to the thing that the order of triple items of a public key is varied along with 
every encryption. 

Due to the interlacement of 00-pairs and non-00-pairs and the randomicity of bit string generation, 
the padding string and the permutation string make one identical original plaintext be able to 
correspond to at most 2ñ / 42ñ - n (exponential in n) different ciphertexts. It will take the running time of 
O(ñ2ñ / 22ñ - nlg2M) bit operations exhaustively to search all the possible ciphertexts of an original 
plaintext. Therefore, the correspondence between any arbitrary ciphertext and a related original 
plaintext are indistinguishable in subexponential time. 

Concretely speaking, the running time of searching all the ciphertexts of an original plaintext is 
Ŧs = (96)29 6 / 229 6 - 80(464)2  28 8  > 28 0  for n = 80, ñ  = 96, and lg M = 464; 
Ŧs = (112)21 1 2 / 221 1 2 - 96(544)2  29 8  > 29 6  for n = 96, ñ  = 112, and lg M = 544; 
Ŧs = (128)2128/22128-112(644)2  2108  2112 for n = 112, ñ = 128, and lg M = 640. 

6.4.2   Nonmalleability of Ciphertexts 

An encryption scheme is said to be malleable if it is possible for an adversary to transform a 
ciphertext into another ciphertext revertible to a related plaintext. That is, given an cipher-text of a 
plaintext , it is possible to generate another ciphertext which can decrypt to the plaintext f() without 
necessarily knowing or learning , where f is a known function [25]. 

By way of examples, let a RSA ciphertext  = e % N, then 
ze = (z)e % N 

is a malleation of , which decrypts to f() = z % N.  
Again let an ElGamal ciphertext  = (gr, yr % p), then 

z = (gr, zyr % p) 
is a malleation of  = (gr, yr % p), which decrypts to f() = z % p. Thus, if ′ = z % p is known, 
then  = ′z -1 % p is found. 

In the new scheme, there is the ciphertext 

Ḡ = E(Ḃ ) = ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i % M 

which takes a bit-pair as an operation unit, and where Ḃ = B1…Bñ/2 is a related extended plaintext.  
Thus, evidently the plaintext function f(Ḃ) = zḂ % M is not suitable for Ḡ. Again considering that Bj 

occurs in the subscript of multiplied Ci, and moreover is relevant to the random bit string r1…rñ/2 that 
can be guessed only in exponential time, it is impossi-ble to exist other plaintext function f(Ḃ) which 
corresponds to the malleation of E(Ḃ) = Ḡ. 

6.4.3   Proof of the Semantical Security 

If the security requirement of a cryptoscheme can be stated formally in an antagonistic model, as 
opposed to heuristically, with clear assumptions that certain computational problems are intractable, 
and an adversary has access to he algorithms of the cryptoscheme as well as enough computational 
resources, the cryptoscheme possesses provable security [28][29]. 

Definition 11: A cryptoscheme is said to be semantically secure if an adversary who knows the 
encryption algorithm of the cryptoscheme and is in possession of a ciphertext is unable to determine 
any information about the related plaintext [28]. 
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It is subsequently demonstrated that semantic security is equivalent to another definition of security 
called ciphertext indistinguishability [30]. If a cryptoscheme has the property of indistinguishability, 
then an adversary will be unable to distinguish a pair of ciphertexts based on the two plaintexts 
encrypted by a challenger. 

A chosen plaintext attack (CPA) is an attack model for cryptanalysis which presumes that the 
attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain the corresponding 
ciphertexts that are expected to decrease the security of an encryption scheme [29]. 

Definition 12: A cryptoscheme is said to be IND-CPA (indistinguishable under chosen plaintext 
attack), namely semantically secure against chosen plaintext attack, if the adversary cannot determine 
which of the two plaintexts was chosen by a challenger, with probability significantly greater than 1/2, 
where 1/2 means the success rate of random guessing [29][31]. 

For a probabilistic asymmetric cryptoscheme based on computational security, indistinguishability 
under chosen plaintext attack is illuminated by a game between an adversary and a challenger, where 
the adversary is regarded as a probabilistic polynomial time Turing machine, which means that it must 
complete the game and output a guess within a polynomial number of operation steps. 

Notice that for the JUOAN cryptoscheme, the adversary may be also regarded as a probabilistic 
subexponential time Turing machine since no subexponential time solution to the MPP or ASPP is 
found so far. 

Theorem 1: The JUOAN cryptoscheme is semantically secure against chosen plaintext attack on the 
assumption that the MPP and ASPP cannot be solved in subexponential time. 

Proof: 
Let E(kp, ) represents the encryption of a message (plaintext)  under the public key kp. 
A game between an adversary and a challenger is given as follows. 
 The challenger calls the key generation algorithm with the parameters n, ĩ, and Þ, obtains a key 

pair (kp, ks), publishes kp = ({C1, …, C3ñ/2}, M) to the adversary, and retains ks for himself. 
 The adversary may perform any number of encryptions or other compatible operations. 
 Eventually, the adversary chooses any two distinct n-bit plaintexts (0, 1), and submits them to 

the challenger. 
 The challenger selects a bit x  {0, 1} uniformly at random, and sends the challenge ciphertext  

Ḡ = E(kp, x) = ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i % M 

back to the adversary, where x = b1…bn. 
 The adversary is free to perform any number of additional computations or encryptions. Finally, it 

outputs a guess for the value of x. Therefore need to analyze the probability of hitting x. 
Because the intractabilities MPP and ASPP have no subexponential time solutions, neither can the 

adversary decrypt Ḡ for x with a private key, nor can directly solve  

Ḡ  ñ/2 
i=1 (Cri(3(i – 1) + Bi) + ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) 

for x (= b1…bn = B1…Bn/2). 
It is known from the encryption algorithm that one identical plaintext may correspond to at most 2ñ / 

4 

2ñ - n different ciphertexts, where ñ = n + 16, and it will need the running time of O(ñ2ñ / 22ñ - nlg2M) bit 
operations to verify all the possible ciphertexts of a plaintext. Thus the probability that the adversary 
hits x with guessing is only (1 / 2) + (1 / 2ñ / 42ñ - n), where 2ñ / 42ñ - n is exponential in n, which means 
that 1/2ñ / 4 2ñ - n is a negligible function of n, and for every (nonzero) polynomial function poly(n) 
(notice that in the JUOAN cryptoscheme, it may be also a subexponential function), there exists n0 such 
that 1/2ñ / 42ñ - n < 1 / poly(n) for all n > n0. 

In summary, the JUOAN public key cryptoscheme is semantically secure, namely IND-CPA.     

7 Conclusion 

The new cryptoscheme builds its security firmly on two intractabilities:  
 the MPP Ci = (AiW

ℓ(i))δ % M with Ai   and ℓ(i) from , and 

 ASPP Ḡ  ñ/2 
i=1 (Cri(3(i – 1) + Bi)+ri(3(i – Ḅi) + Bi))

Ḅ
i (% M). 

No subexponential time solutions to them are found, and there exist only exponential time solutions so 
far [32].  
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The new cryptoscheme utilizes a bit-pair string to decrease the bit-length of the modulus M, exploits a 
bit-pair shadow string to guard against the LLL lattice basis reduction attack, and adopts the approaches 
of introducing a random bit string into an encryption and appending a random bit string to a plaintext to 
avoiding the adaptive-chosen-ciphertext attack and the meet-in-the-middle dichotomy. 

As ñ = 96, 112, or 128, there exists lg M = 464, 544, or 640, which assures that when a JUOAN 
ciphertext Ḡ with r1rñ/2 = 1…1 is converted into an ASSP through a discrete logarithm, the density of a 
related ASSP knapsack is pretty high, and larger than 1. 

There always exists contradiction between time and security, so does between space and security, 
and so does between time and space. We attempt to find a balance which is none other than a delicate 
thing among time, space, and security. 
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