2,274 research outputs found

    Treatment of Linear and Nonlinear Dielectric Property of Molecular Monolayer and Submonolayer with Microscopic Dipole Lattice Model: I. Second Harmonic Generation and Sum-Frequency Generation

    Full text link
    In the currently accepted models of the nonlinear optics, the nonlinear radiation was treated as the result of an infinitesimally thin polarization sheet layer, and a three layer model was generally employed. The direct consequence of this approach is that an apriori dielectric constant, which still does not have a clear definition, has to be assigned to this polarization layer. Because the Second Harmonic Generation (SHG) and the Sum-Frequency Generation vibrational Spectroscopy (SFG-VS) have been proven as the sensitive probes for interfaces with the submonolayer coverage, the treatment based on the more realistic discrete induced dipole model needs to be developed. Here we show that following the molecular optics theory approach the SHG, as well as the SFG-VS, radiation from the monolayer or submonolayer at an interface can be rigorously treated as the radiation from an induced dipole lattice at the interface. In this approach, the introduction of the polarization sheet is no longer necessary. Therefore, the ambiguity of the unaccounted dielectric constant of the polarization layer is no longer an issue. Moreover, the anisotropic two dimensional microscopic local field factors can be explicitly expressed with the linear polarizability tensors of the interfacial molecules. Based on the planewise dipole sum rule in the molecular monolayer, crucial experimental tests of this microscopic treatment with SHG and SFG-VS are discussed. Many puzzles in the literature of surface SHG and SFG spectroscopy studies can also be understood or resolved in this framework. This new treatment may provide a solid basis for the quantitative analysis in the surface SHG and SFG studies.Comment: 23 pages, 3 figure

    Vertical Breast Displacement in Asian Women During Exercise: influence of Bra Type, Size and Different Parts of the Breast

    Get PDF
    Asian women have smaller breast sizes and greater breast density, which suggests specific research on their breast kinematics and biomechanics. To investigate vertical breast displacement of Asian women among exercise modalities (rope skipping, walking, jogging, running) in different support conditions (wearing everyday bra or sports bra), and assess the motion between different parts of the breast, seven participants were selected to participate in this study. Five infrared markers were placed on each of their left breasts, and a three-dimensional motion capture system (NDI Optotrak Investigator) was used to collect the data on vertical breast displacement during walking (5 km/h), jogging (7.5 km/h), running (10 km/h) and rope skipping (2 Hz). No significant difference was found in the vertical displacement of different parts of the breast in the two bra conditions. Also, there was significant difference in vertical breast displacement among rope skipping, jogging and running. Breast size did not significantly affect its vertical displacement. The smaller, denser breast appears to reach a threshold of vertical displacement that is similar at high severities of dynamic exercises (jogging, running and rope skipping). The results might be useful for designing special sports bras for Asian women with small breasts or rope skipping participants to improve the shock absorption function

    The comparative effectiveness of statin therapy in selected chronic diseases compared with the remaining population

    Get PDF
    Total cholesterol (TC) concentration is the most commonly used measure of statin efficacy in the UK. This study aimed to evaluate the effectiveness of statins in lowering TC, cardiovascular events (CV) and mortality five common chronic diseases (chronic obstructive pulmonary disease (COPD), osteoarthritis (OA), rheumatoid arthritis (RA), chronic kidney disease (CKD), and diabetes mellitus (DM)) and to compare effectiveness with the rest of the population not recorded as having these diseases

    Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction

    Get PDF
    Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.Peer reviewe

    Spatio-Temporal Interpolation Is Accomplished by Binocular Form and Motion Mechanisms

    Get PDF
    Spatio-temporal interpolation describes the ability of the visual system to perceive shapes as whole figures (Gestalts), even if they are moving behind narrow apertures, so that only thin slices of them meet the eye at any given point in time. The interpolation process requires registration of the form slices, as well as perception of the shape's global motion, in order to reassemble the slices in the correct order. The commonly proposed mechanism is a spatio-temporal motion detector with a receptive field, for which spatial distance and temporal delays are interchangeable, and which has generally been regarded as monocular. Here we investigate separately the nature of the motion and the form detection involved in spatio-temporal interpolation, using dichoptic masking and interocular presentation tasks. The results clearly demonstrate that the associated mechanisms for both motion and form are binocular rather than monocular. Hence, we question the traditional view according to which spatio-temporal interpolation is achieved by monocular first-order motion-energy detectors in favour of models featuring binocular motion and form detection

    GIVE: portable genome browsers for personal websites.

    Get PDF
    Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present an open source programming library called GIVE that facilitates the creation of personalized genome browsers without requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization of multiple types of genomics data, including genome annotation, "linear" quantitative data, and genome interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with collaborators. GIVE is available at: https://www.givengine.org/

    “Sounding” out crystal nuclei—A mathematical-physical and experimental investigation

    Get PDF
    We outline techniques for the control and measurement of the nucleation of crystalline materials. Small angle x-ray scattering/wide angle x-ray scattering x-ray diffraction measurements are presented that demonstrate the impact of low power, continuous, non-cavitational ultrasound on the nucleation and crystallization of a wax—n-eicosane dissolved in a heptane/toluene solvent. A mathematical-physical approach based on the rectification of heat and mass transport by such a low power oscillating pressure field is outlined, and it is suggested that this approach be combined with dissipative particle dynamics computational modeling to develop a predictive method capable of modeling the impact of low power oscillating pressure fields (acoustics and ultrasonics) on a wide range of nucleating systems. Combining the ultrasound pitch and catch speed of sound measurements with low power harmonically oscillating pressure fields to monitor and control nucleation presents the prospect of entirely new industrially significant methods of process control in crystallization. It also offers new insights into nucleation processes in general. However, for the acoustic control technique to be widely applied , further theoretical and modeling work will be necessary since, at present, we are unable to predict the precise effect of low power ultrasound in any given situation

    The nature of localization in graphene under quantum Hall conditions

    Full text link
    Particle localization is an essential ingredient in quantum Hall physics [1,2]. In conventional high mobility two-dimensional electron systems Coulomb interactions were shown to compete with disorder and to play a central role in particle localization [3]. Here we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single electron transistor [11]. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.Comment: 18 pages, including 5 figure

    Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor

    Full text link
    The electronic density of states of graphene is equivalent to that of relativistic electrons. In the absence of disorder or external doping the Fermi energy lies at the Dirac point where the density of states vanishes. Although transport measurements at high carrier densities indicate rather high mobilities, many questions pertaining to disorder remain unanswered. In particular, it has been argued theoretically, that when the average carrier density is zero, the inescapable presence of disorder will lead to electron and hole puddles with equal probability. In this work, we use a scanning single electron transistor to image the carrier density landscape of graphene in the vicinity of the neutrality point. Our results clearly show the electron-hole puddles expected theoretically. In addition, our measurement technique enables to determine locally the density of states in graphene. In contrast to previously studied massive two dimensional electron systems, the kinetic contribution to the density of states accounts quantitatively for the measured signal. Our results suggests that exchange and correlation effects are either weak or have canceling contributions.Comment: 13 pages, 5 figure
    corecore