126 research outputs found

    Transient vibration analysis of BTA deep-hole drilling shaft system

    Get PDF
    Dynamics of deep-hole drilling shaft system is closely related to hole processing quality. From the viewpoint of rotor dynamics and fluid-structure interaction, the governing equation of the drilling shaft system for lateral vibration is obtained taking into account of fluid-structure interaction, rotational inertia, gyroscopic effect, the effect of motion constraints and frictional damping generated by surrounding fluid. The influence of rotational angular velocity and compressive axial force on transient vibration of drilling shaft is mainly examined. It has been found that rotational angular velocity has an obvious effect on the lateral vibration of drilling shaft, whereas the lateral vibration of drilling shaft does not change significantly with the increase of compressive axial force

    Numerical investigation on nonlinear dynamic responses to fluid-structure interaction in BTA deep-hole drilling shaft system

    Get PDF
    Numerical investigation is conducted into the nonlinear dynamic responses to fluid-structure interaction in deep-hole drilling shaft system. Based on the theories of pipes and tubes conveying fluid, the governing equation of the drilling shaft system is obtained taking into account of the fluid-structure interaction and the effect of the motion constraints. The nonlinear partial differential governing equation of motion is discretized in modal space using the Galerkin method and then transformed into a set of ordinary different equations. Numerical solutions of these equations are then obtained using the fourth order Runge-Kutta method. The influence of the forcing frequency and the support constraints on the dynamic behaviors of the drilling shaft is examined. The nonlinear dynamic behaviors of the drilling shaft system are presented by the bifurcation diagram and phase diagram. It has been found that the magnitude of support stiffness and the number and position of support constraints have a significant influence on dynamic behaviors of the drilling shaft system. The study in the paper provides an effective guidance to maintain the stability of the BTA deep-hole drilling shaft system through selecting the favorable operation parameters in deep hole drilling process

    Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    Get PDF
    Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques.Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype.This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis

    AccuTyping: new algorithms for automated analysis of data from high-throughput genotyping with oligonucleotide microarrays

    Get PDF
    Microarray-based analysis of single nucleotide polymorphisms (SNPs) has many applications in large-scale genetic studies. To minimize the influence of experimental variation, microarray data usually need to be processed in different aspects including background subtraction, normalization and low-signal filtering before genotype determination. Although many algorithms are sophisticated for these purposes, biases are still present. In the present paper, new algorithms for SNP microarray data analysis and the software, AccuTyping, developed based on these algorithms are described. The algorithms take advantage of a large number of SNPs included in each assay, and the fact that the top and bottom 20% of SNPs can be safely treated as homozygous after sorting based on their ratios between the signal intensities. These SNPs are then used as controls for color channel normalization and background subtraction. Genotype calls are made based on the logarithms of signal intensity ratios using two cutoff values, which were determined after training the program with a dataset of ∼160 000 genotypes and validated by non-microarray methods. AccuTyping was used to determine >300 000 genotypes of DNA and sperm samples. The accuracy was shown to be >99%. AccuTyping can be downloaded from

    The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang'E 4

    Get PDF
    Chang'E 4 is the first mission to the far side of the Moon and consists of a lander, a rover, and a relay spacecraft. Lander and rover were launched at 18:23 UTC on December 7, 2018 and landed in the von K\'arm\'an crater at 02:26 UTC on January 3, 2019. Here we describe the Lunar Lander Neutron \& Dosimetry experiment (LND) which is part of the Chang'E 4 Lander scientific payload. Its chief scientific goal is to obtain first active dosimetric measurements on the surface of the Moon. LND also provides observations of fast neutrons which are a result of the interaction of high-energy particle radiation with the lunar regolith and of their thermalized counterpart, thermal neutrons, which are a sensitive indicator of subsurface water content.Comment: 38 pages, submitted to Space Science Review

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443
    • …
    corecore