140 research outputs found

    Detecting Gold Biomineralization by Delftia acidovorans Biofilms on a Quartz Crystal Microbalance

    Get PDF
    © 2019 American Chemical Society. The extensive use of gold in sensing, diagnostics, and electronics has led to major concerns in solid waste management since gold and other heavy metals are nonbiodegradable and can easily accumulate in the environment. Moreover, gold ions are extremely reactive and potentially harmful for humans. Thus, there is an urgent need to develop reliable methodologies to detect and possibly neutralize ionic gold in aqueous solutions and industrial wastes. In this work, by using complementary measurement techniques such as quartz crystal microbalance (QCM), atomic force microscopy, crystal violet staining, and optical microscopy, we investigate a promising biologically induced gold biomineralization process accomplished by biofilms of bacterium Delftia acidovorans. When stressed by Au3+ ions, D. acidovorans is able to neutralize toxic soluble gold by excreting a nonribosomal peptide, which forms extracellular gold nanonuggets via complexation with metal ions. Specifically, QCM, a surface-sensitive transducer, is employed to quantify the production of these gold complexes directly on the D. acidovorans biofilm in real time. Detailed kinetics obtained by QCM captures the condition for maximized biomineralization yield and offers new insights underlying the biomineralization process. To the best of our knowledge, this is the first study providing an extensive characterization of the gold biomineralization process by a model bacterial biofilm. We also demonstrate QCM as a cheap, user-friendly sensing platform and alternative to standard analytical techniques for studies requiring high-resolution quantitative details, which offers promising opportunities in heavy-metal sensing, gold recovery, and industrial waste treatment

    Pure angular momentum generator using a ring resonator

    Get PDF
    Author name used in this publication: X. M. ZhangAuthor name used in this publication: D. P. Tsai2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Knowledge and attitude on maternal health care among rural-to-urban migrant women in Shanghai, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In China, with the urbanization, women migrated from rural to big cities presented much higher maternal mortality rates than local residents. Health knowledge is one of the key factors enabling women to be aware of their rights and health status in order to seek appropriate health services. This study aims to assess the knowledge and attitude on maternal health care and the contributing factors to being knowledgeable among rural-to-urban migrant women in Shanghai.</p> <p>Methods</p> <p>A cross-sectional study was conducted in a district center hospital in Shanghai where migrants gathered. Totally 475 rural-to-urban migrant pregnant women were interviewed and completed the self-administered questionnaire after obtaining informed consent.</p> <p>Results</p> <p>The mean score of knowledge on maternal health care was 8.28 out of 12. However, only 36.6% women had attended the required 5 antenatal checks, and 58.3% of the subjects thought financial constrains being the main reason for not attending antenatal care. It was found that higher level of education (OR = 3.3, 95%CI: 1.8–3.8), husbands' Shanghai residence (OR = 4.0, 95%CI: 1.3–12.1) and better family income (OR = 3.3, 95%CI: 1.4–8.2) were associated with better knowledge.</p> <p>Conclusions</p> <p>Rural-to-urban migrant women's unawareness of maternal health service, together with their vulnerable living status, influences their utilization of maternal health care. Tailored maternal health education and accessible services are in demands for this population.</p

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica)

    Get PDF
    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet

    The effects of mutant Ras proteins on the cell signalome

    Get PDF
    The genetic alterations in cancer cells are tightly linked to signaling pathway dysregulation. Ras is a key molecule that controls several tumorigenesis-related processes, and mutations in RAS genes often lead to unbiased intensification of signaling networks that fuel cancer progression. In this article, we review recent studies that describe mutant Ras-regulated signaling routes and their cross-talk. In addition to the two main Ras-driven signaling pathways, i.e., the RAF/MEK/ERK and PI3K/AKT/mTOR pathways, we have also collected emerging data showing the importance of Ras in other signaling pathways, including the RAC/PAK, RalGDS/Ral, and PKC/PLC signaling pathways. Moreover, microRNA-regulated Ras-associated signaling pathways are also discussed to highlight the importance of Ras regulation in cancer. Finally, emerging data show that the signal alterations in specific cell types, such as cancer stem cells, could promote cancer development. Therefore, we also cover the up-to-date findings related to Ras-regulated signal transduction in cancer stem cells. © 2020, The Author(s)
    corecore