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Abstract: All conventional Kalman filtering methods depend dogreat extent on dynamic models for
describing the motion state of vehicle. However, l@stcGPS navigation systems do not provide velocity and
acceleration measurements to construct dynamic motleérefore, it is rather difficult to establish reasdamab
dynamic models. A windowing-recursive approach (WR#jich employs previous positions to predict the
current position is proposed, the transition matsixniodeled for transforming the previous positionsht®
current one. Two typical transition matrices are coogtdiby numerical polynomial fitting and extrapolation.
A real vehicular GPS experiment is carried out to alestrate the WRA performances in two relative
positioning scenarios. The data are processed bigdise squares approach (LSA) and by WRA using the two
developed transition matrices. The results show tleetWIRA performed excellently in a high sampling rate
data. In case of a lower sampling rate, higher opidynomial fitting and extrapolation models work better
than lower order models for a given window. In &ddi the extrapolation models can alleviate the
computation burdens significantly relative to the polyal fitting models.

Key words. GPS; Transition matrix; Windowing-recursive approa€aliman filter

1. Introduction

In GPS kinematic positioning at the meter-level aacyr pseudoranges are preferred to phase meastsemen
because they are free of cycle-slips. However, ke fate many challenges for pseudorange utilization

particularly in urban areas due to signal degradatitockages, outliers and lack of measurements (#es
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et al. 2004). The most important challenge in GPSgaéion is how to efficiently improve the precision and
reliability of real-time solution.

Integrated navigation systems, such as INS/GPS, GP&eRd Reckoning), are introduced mainly to
overcome the limitation of each individual navigatsemsor and improve the reliability (Chen and Cros®,199
Sameh et al. 2007, Umar et al. 2007, Logan et al3R®fowever, such integrations are too expensiveeto b
extensively used in low-cost navigation campaigns. Beoélternative, the so-called map matching technique
has also been applied to assist positioning in argasut GPS signal reception (Mohammed et al. 2006).
requires a large number of updated map data andhsixpehardware. The phase-smoothed code (Hatch 1982)
was proposed to decrease the pseudorange noiseelylyi combining phase and pseudorange measurements
in the case of no cycle-slips. If cycle slips existha accuracy of phase-smoothed code is lower tharothat
Doppler measurements, Doppler-aided technique eansed further to smooth code and thus improve its
accuracy (Cheng 1999). As an instantaneous measntetmat directly relates to the relative movement
between the receiver and satellite, Doppler shiftdesesn widely used in velocity determination (Brutonlet a
1999, Zhang et al. 2006). Moreover, the positiod galocity were trivially determined simultaneously by
combining pseudorange and Doppler shifts (Mao et0l2p

In target tracking area, a time correlated accelerdtiostion and its probability density variance were
modeled by Singer (1970) in order to achieve optitradking performance, which was further developed by
Zhou and Kumar (1984) by adding constraint conditbbmcceleration between adjacent epochs. The typical
constant velocity and acceleration dynamic models antho dynamics” model were comprehensively
discussed and compared for GPS/INS positioning baseethicle trajectories (Schwarz et al. 198&cently,
in the high-frequency motion conditions, discrete giag convolution algorithm has been proposed to
determine the state equation (El-Diasty et al. 2006)

As an efficient sequential estimation algorithm, Kalnféter (KF) is extensively applied in navigation
where observational errors and the predicted eamsassumed to be independent and normally distributed
Actually, unexpected errors exist in both state model abservation model. In order to balance the
contributions of the state model and observation mindgtle final solution, some adaptively robust filteas
been developed by Koch and Yang (1998) and Yaiad) ¢2001, 2002, 2003, 2005) in the frame of the rbbus
M estimation (Huber 1981) and Bayesian estimation.

Since the low cost GPS navigation system cannotigeathe velocity and acceleration measurements, it is
rather difficult to establish a reasonable dynamicdehoFor this reason, we will develop an alternative
windowing-recursive approach (WRA), where the curngosition vector is derived from several previous
position vectors by using a transition matrix thatgdoet rely on the velocity and acceleration. Sec®owill
derive a general representation of WRA. Section 3 witistruct two kinds of transition matrix by numerical
polynomial fitting and extrapolation. Real vehicular GB%eriments are described in section 4 and the

concluding remarks are given in section 5.

2. General representation of windowing-recur sive approach

The trajectory of a moving object can reasonablasmimed to be smoothed in a short time span. Theyefor
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the position at the present epoch can be predicted rebably with the positions of multiple historical epochs
than with the position of only the latest epoch. Assignhat the time-window length containepochs, we
construct the transition equations as

X = Dy i) X(kenwg) W (2.1)

where X, denotes a state vector at epdx;hx( is a column vector consisting of stacked state vectors

k—n:k—1)
from epochk-n to epochk-1. The symbolw, denotes a prediction error vector with the zero maaah

covariance matrix2,, . The transition matrix at epodhis @ , Which transforms the states of the

k,k=nk-1)

previousn epochs into the current one.

Let X e be the covariance matrix of the historical stateo:ecft( then the predicted position

mk-1) k-nk-1) ’
vector at epock and its corresponding covariance are derived by
Xk = ¢(k,k—n:k—1) )’Z(k—n:k—l) (22)
and
— T
Eik - ¢(k,k—n:k—l)Z‘>”<(k,n:k,1) ¢(k,k—nk—]) + Ewk (2-3)1

respectively. The linearized observation equationpe@tiek are symbolized as,

L = AX +& (2.4)
where A, is the design matrix of current state vector, dpdis the measurement vector affected by
normally distributed noiseg, with zero mean and co-variance mat® =0-P,*. The known prior
variance scalar isag and B, is the weight matrix of the measurements. By minimizihg weighted
measurement residual vectat, = A X, —I, and predicted residual veclyy = X, — X, , the Bayesian risk
function is established by
nlin Ve RV, +a, vy PV (2.5)

X

where Pfk = aéZ;kldenotes the weight matrix of predicted state vedibe symbol a, is defined as an

adaptive factor and generally we hagg # 0 (Yang and Gao 2005). The solution of minimal probl@)
is

X =X+ K (I, = AX,) (2.6)
z, =1 (I -KA)Z, (2.7)
k ak k
1 1 B
K =— ATl —AX AT+R 2.8
k a,k xkAk[a,kAk xkAk+ kJ ( )

where 2 is the covariance matrix of the Bayesian estimatoe ddrrelation betweerX, and )A((k_n:k_l)

should be rigorously considered when the time windawes forward. Hereby, the covariance ma ot

is expressed as,



T
R(k-rik-1) >

DA s Z‘”’ (2.9)
%4 K it R
Rewriting (2.6) we obtain,
X = (1 =K A) X+ K, (2.10)
Replacing X, in (2.10) with (2.2) the alternative expression20) is
% =(1 - KkAk)¢(k,k—n:k—l))2(k—n:k—1) + Kl (2.11)

Thus, the covariance matrix of(k and )A((k_n:k_l) is derived from (2.11) by the law of error propagatas

follows
Z*k*(k-n;k-l) = ( I =K A ) ¢(k,k—n:k—1)zi(k_":k_1) (2.12)

It is rather easy to update the window vecub(q(_n+1:k) and its corresponding covariance matl'E(;(

k-n+1k)
which is a submatrix of (2.9). The WRA from epdch to k is summarized with the following steps (see
Fig.1):

The predicted state and
covariance matrix

The k-th time-window va
Xk EXk
Prior state vectors and covariance Store the
o X window state
X(k—nk—l) Kk vectors And
) >
co-variance
Y X rrizk)
. X A N Knea)
Observation at epoch k Compute Kk % Zxk Zxkx(kmm -

Update prior state vectors and covariance
k=k+1

Fig. 1.The computation process of WRA

Step 1. Initialize the historical window information @F1) epochs to achieve the position vectﬁ(k_n:k_l)

and its covariance matrix’ Kjencs) Then compute the predicted residfs and 2,  with (2.2) and

(2.3);

Step 2. ComputeK, , X,, X, ,and E;(k;((k_n_k with (2.8), (2.6), (2.7) and (2.12) respectively;

_1)

R
Step 3. Update the window information, take theated X sy out from (2.9) and store it along with the

updated position vector)A((k_nﬂ:k) ;

Step 4. If no interruption occurs, implement Step the@vise, re-initialize the window-recursive processrfr

the epochk+1.



It is important to note that the position vectorsi@pochs in the initialization process are computdyg by
the GPS measurements based on the LS adjustmentontiputation burden of WRA does not strongly depend
on the window length, because the only inversion djperan (2.8) is not related to the window length.
Additionally, if the dimension of state vector is smalllean that of the measurement vector, the equivalent
recursive formulae can be constructed to decreasedhgutation burden similar to the equivalent KF
formulae (Koch and Yang 1998). In the case of thadawv lengthn=1 the following properties are assigned to
WRA:
(i) If a=1, WRA s essentially equivalent to the classical KF.
(i) If a=1andP is an equivalent weight matrix (Yang et al. 200t 1989), WRA is equivalent to robust

KF.

(i) If =0, WRA is equivalent to LS adjustment.

(iv) If a=0andP is an equivalent weight matrix, WRA is identical tdoust LS adjustment.
3. Maodeling thetransition matrix

The most important benefit of WRA is using informatmimultiple historical epochs rather than only latest
one. The different models are identified by the différeansition matrices. In this section, we will establish

two transition matrices by using the Newton interpotatitodel and polynomial fitting model.

3.1. Extrapolation model

The Newton interpolation and extrapolation method isufar numerical analysis method, which is employed

here to construct the transit matrix for its efficieatfprmance. Assuming that the position vector isrecfion
of timet, i.e., X = X(t), and X, denotes the position vector at epothand Ot the time interval between

consecutive epochs, the position at an arbitrary tiamebe expressed by theh order of Newton's forward

differential extrapolation model as,

X(tk—n+s’ n) = X(tk—n + Sdt’ n) (31)
where s denotes thesth extrapolated epocf(sz n) in time window andn is the order of forward

extrapolation. By expanding (3.1) and truncating #mes with order higher than we obtain

_ S s(s-1) s(s-DOM{s—-n+2)
X (tepes,N) =A'F, +EA2F0+ > AF ,+ I+ - A'F,+R,(s) (32
! s(s-1 s—n+1
where Rn(s) is the high-order remainder term. L&/ =( s)| = ( )I]]]]?j ) , then (3.2)
s—n)!n! nl



can be simplified as

X (s N) = COA'F, + CIA’F, +C2A F, + - C" A"F, (3.3)

where the small high-order terar(s) is disregarded A"F, with mD{l, 2, ... ,n} is derived from

the following recursion formulae:

1 —
A FO - Xk—n

2 -_— —
A I:0 - Xk—n+1 Xk—n

3 _
A FO - Xk—n+2 _2Xk—n+l+ Xk—n

Y _ _ 34
A FO - Xk—n+3 3Xk—n+2 + 3Xk—n+l Xk—n ( )

(I
m-1

AmFo = Z(_l)m_l_i Crin—lxk—n+i

i=0

Specially, fors= n, equation (3.3) is rewritten as

X, = X (t_pus,N) = CPA'F, + CoAF +C/A T + B CAF, (3.5)

Substituting (3.4) into (3.5), we obtain an alternaéixpression forX, as

X, = { (-1 e, ]} (3.6)

i=0

i=1 =1

According to the equatio)_ & (Z b, j => b, (Z a j , we easily rewrite (3.6) to be

n-1
Xe = 20 X 3.7)
j=0
where the coefficientd; reads
1 =5 (-)7"¢cic. jo{o, 1 .0~ 1 38
T2 'C, 1 o..n (3.8)
i=]
The matrix form of (3.7) is
X, = 'JX(k—n:k—l) (3.9)
.
— T T T e
where X _|:X(k—n) Xionsg) x(k_l)] represents arg8column vector of positions for at
epochs in the window,J =[J1 J, .. Jn]T UE,;is a 3x3n constant coefficient matrix, andl is

the Kronecker product. In real application, the imatd is primarily computed offline and the coefficients for



2<n<5 are presented in Table 1. Obviously, the transitiorrimadi(k’k_n:k_l) in the extrapolation model is

specified by the matrixJ .

3.2. Polynomial fitting model

When the order of extrapolation is less than the nurobepochs in the window, the elements of transition
matrix should be estimated by LS. We use a polyndfitialg model here to construct the transition matrix.
Assuming the fitting order is1 (m<n), the polynomial model reads
Xen =&
Xy = +a,0t+aot’+..+a o™
(3.10)

wa=a e (Al al(n-)a] +.ra,[(n-)a]"

where 3, =[a1.x a, qZ]T is the column vector to be estimated. Rewriting (BihOmatrix form, one

obtains
Xj-nka) = Ma+e (3.11)
1 0 0 a,
1 ot ot a,
where M = UE;s a= , and ¢ is the normally distributed
1 (n-)at .. [(n-3at]" a,

-1
X(k—n:k—l)

noise vector. Define the weight matrix IB,%_ - 2 , and then the LS based optimal estimagris

calculated by

a=(M7P, M )_l MTP: Ry (3.12)
Denoting U :[1 not ... (né't)m_l} U E,.5, the position of the current epoch is extrapolatsihg the
fitted coefficients
X, =ua (3.13)
Substituting (3.12) into (3.13), we obtain
X, = U ( MTP, M )_1 MTPy Ry (3.14)

-1
Up to now, we have constructed the transition matBiy | .,y = u(M P M ) M TPi(k_n_H) for the

X (k-rk-1)
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polynomialfitting model. In principle, in the polynomial fitting met] the polynomial constraint is imposed on
the positions of multiple epochs. Thus the polynomi&hfi model is, to a certain extent, able to resist th
outliers and thus decreases their influences onirtlaé result in the time window. In addition, the polynaimi
fitting model is reduced to special cases in the ¥alg scenarios: (i) ifr=2, the fitting model is equivalent to
the constant velocity model; and (ii)rif=3 it is equivalent to the acceleration model. The patyiabfitting

model is reduced to the Newton extrapolation model wigenedundant point exists in the time window and

P, is chosen as an identity matrix.

X(k-nk-1)

4. Experiment and analysis

The experiment data were collected with the sampéal of 1 s by two Topcon HiPer-Pro receivers2@n
April 2008. Although the longest distance between #ference and rover stations is less than 3 km, \ariou
complex kinematic states are present. The doublereliffed observation model is used and the residual
systematical errors are basically ignored due to theiyhigpatial correlation in such short distance. The C/A
code measurements were utilized in the whole test tfEjectory is shown in Figure 2 and the velocitiethe
vehicle in the three components are in Figure 3. Theige results obtained by dual-frequency carrier @has
are used as the actual values to evaluate the acauodtiee developed models.

In the following, we will investigate the accuracfsour WRA for different window lengths, fitting orders
and sampling intervals. In all experiments the weihtrix P, of double differenced GPS observations was
rigorously derived from the identity weight matrix of iffetenced observations by using the law of error
propagationDifferent W, assigned leads to different solutions, which meaas ttie stochastic state model

error should be reasonably estimated in real-timechMresearch has been carried out to determine the
stochastic model errors (Wang 2000, Moore and W&@$ 2Hewitson and Wang 2007, Li et 2008, Geng

and Wang 2008). Yang and Gao (2005) also propasegp@mal algorithm to balance the contributions of state
model and observation model. If better results ar@atessome work related to quality control, e.g. outliers
detection and isolation, model error estimation mustdoe@ and correctly done according to previous studies.
It has been proved that these methods and algorginengery effective and practical to achieve good aed e

optimal results. Therefore, without affecting the vigffiédnd efficiency of our WRA, we selected for simplicity

the co-variance matrixx’, as a 3x 3 diagonal matrix with the element of 0.2mccording to some prior

calculations. The extrapolation model and polynonitiih§g model were used in the casesneim andn>m,
respectively.

The epoch-wise positions computed by LS approachhanersin Fig. 4(a) for the latter comparison purpose.
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Obviously, the worse LS solution is generally assigtedhe larger PDOP value (see Fig. 5). The two
constructed transition matrix models of WRA are examingtie window lengtim from 2 to 5 with the fitting

ordermfrom 2 ton, and the accuracies in three coordinate comporeatsomputed by

(4.1)

where AX, AY, AZ are the position differences between our WRA sahstiand the actual ones , and

g, , 0, and g, are the accuracies. Hegés the number of epochs. The computed accuracieshawn in

upper part of Table 2. In order to demonstrate thopwance of our WRA with contaminated data, satellite
PRN 9 data was added with simulated outliers (15m)1peepochs. As shown in Fig. 4(b) the LS approach
cannot resist the outliers and the accuracy of theedopositions dramatically falls down. The differences
between thenvRA solutions and actual values are illustrated in Bigind accuracies computed by (4.1) are
presented in lower part of Table 2. It is observedhfiTable 2 that: (i) the WRA works as well as LS applo

for processing clean raw data as long as the fittimigrois higher than half of the window length; (ii) For
processing outlier contaminated data, the WRA can mliteiter results than LS approach. Especially in the
case of the window length less than 4 epochs, the pmiwhditting model can usually get better results than
the extrapolation model; (iii) The window length sholbiglless than 5 epochs for the high sampling rate cases
since the longer window needs higher order fitting elavhich are easier to be affected by the outliers.

It is worth to point out that the developed extrapofatmodel is equivalent to the ‘no dynamic’ modelttha
was elaborated in Schwarz (1989) in the caserdf andn=2. For this reason we do not compare our WRA
with KF approach.

We further tested the performance of the WRA inltiveer sampling rate case. The data is sampled by eve
3 seconds and the test strategy is the same as therfexperiments. The statistics are shown in Tablei$.

obvious that the accuracies of WRA in Table 3 areegaly worse than those in Table 2 for low orderdele
(m=<3), but identical for high order models%4). This means that the high order polynomial fittingdeloor

extrapolation model are more suitable in the low dmgpate cases if the outliers has been resistechdy t

robust algorithm.

5. Concluding remarks

In this paper, a general WRA has been proposed RS @avigation. Two kinds of transition matrices are
constructed to specify the extrapolation and polynofittalg models. The real vehicular GPS experiments are
implemented in cases of high and low sampling interviche results show that: (i) WRA with the fittingder

higher than half of the window length works as well &sdpproach in processing the data without any outlier,

9



but WRA can achieve generally better results thanapBroach in processing outlier contaminated data,
especially in the case of the window length less thapaths; (ii) in the high sampling case, the low order
models can describe the motion states more adequatdiachieve the optimal results in the window length
less than 5 epochs. Conversely, in the low sampkisg, the low order models cannot specify the motiorsstate
well enough and, thus high order models with longidow are necessary for achieving better performance
In other wordsthe time window length should be reasonably determaeetrding to the kinematic state of
different moving objectsin general, the varying velocity and acceleration ehigle motion can be
automatically specified in the high order fitting modeiaVRA and, therefore it does not need to constihet

velocity and acceleration dynamical models for predictire vehicular state epoch by epoch.

Acknowledgements

The work is partially sponsored by Natural Sciencenlations of China (Grant No. 40674003, 40874016),
and partially supported by the fund from the Key Latwsaof Advanced Surveying Engineering of SBSM
(Grant No. TJES0809)The authors are very grateful to the anonymous wer for their constructive

comments and suggestions.

References

Bruton A. M., Glennie C. L. and Schwarz K. P. (199ifferentiation for high-precision GPS velocity and.
acceleration determinatio®PS Solutions, 2(4): 7-21.

Cheng P. (1999). Remarks on Doppler-aided smootbficgde rangeslournal of Geodesy, 73: 23-28.

Chen W. and Cross P. A. (1990). Integration of GR& an inertial system for precise surveying applications
Survey Review, 30(238): 375-395.

El-Diasty M., El-Rabbany A. and Pagiatakis S. (2008w developments in state estimation for INS/IGPS
integrated systemsON GNSS 19" I nternational Technical Meeting of the Satellite Division, Fort Worth, TX.

Geng Y and Wang J. (2008) Adaptive Estimation oftild Fading Factors in Kalman Filter for Navigation
Applications.GPS Solutions, 12(4), 273-279.

Hatch R. (1982). The synergism of GPS code andecaneasurement®roceedings of the third international
geodetic symposium on satellite Doppler positioning, Las Cruces, NM, 2: 1213-1231.

Huber P. J. (1981). Robust statistics, John WilewNork.

Hewitson S. and Wang J. (2007) GNSS Receiver Autansnintegrity Monitoring (RAIM) with a dynamic
model,Journal of Navigation, 60(2), 247-263.

Koch K. R. and Yang Y. X. (1998). Robust Kalman dilfor Rank Deficient Observation Modelsurnal of
Geodesy, 72:436-441.

Kuusniemi H., Lachapelle G. and Takala J H. (2004%itidning and velocity reliability testing in degraded

10



GPS signal environment&PS Solutions. 8:226-237, DOI 10.1007/s10291-004-0113-7.

Li B. F., Shen Y. Z. and Xu P. (2008). Assessmédrdtochastic models for GPS measurements with difiter
types of receiversChinese Science Bulletin. 53(20):3219-3225.

Logan S. A., Leahy F. J. and Kealy A. (2003). In&tign of GPS carrier phase and other measurements fo
kinematic mappingJournal of Geodesy, 76: 543-556.

Mao X. C., Wada M. and Hashimoto H. (2002). Nordin&ltering algorithms for GPS using pseudorange and
Doppler shift measurementshe |EEE 5" international conference on intelligent transportation systems,
Singapore.

Mohammed A. Q., Robert B. N. and Washington Y. @006). A high accuracy fuzzy logic based map
matching algorithm for road transpaidturnal of Intelligent Transportation Systems, 10(3): 103-115.

Moore M. and Wang J. (2003) An extended dynamic ehéat kinematic positioningJournal of Navigation,
56(1), 79-88.

Schwarz K. P., Cannon M. E. and Wong R. V. C. (3989 comparison of GPS kinematic models for
determination of position and velocity along a trajectifanuscripta Geod, 14:345-353.

Singer R. A. (1970). Estimating optimal tracking filigerformance for manned maneuvering targdigE
Transactions on Aerospace and Electronic Systems. 6(4): 473-483.

Umar . B., Washington Y. O. and Shaojun F. (200Megrity of an integrated GPS/INS system in the presen
of slowly growing errors. Part I: A critical revie®PS Solutions, 11:173-181.

Wang J. (2000) Stochastic modelling for RTK GPS/Glermassitioning, Navigatiorournal of the US Institute
of Navigation, 46(4), 297-305.

Yang Y., He H. and Xu G. (2001). A new adaptivelpust filtering for kinematic geodetic positioninpurnal
of Geodesy, 75(2):109-116.

Yang Y. (2002). Robust estimator for correlated obetgons based on bifactor equivalent weigltarnal of
Geodesy, 76: 353-358.

Yang Y. and Xu T. (2003). An adaptive Kalman Filteasbd on sage windowing weights and variance
componentsThe Journal of Navigation, 56(2): 231-240.

Yang Y. and Gao W. (2005). Comparison of adaptaetdrs in Kalman Filter on navigation resulihe
Journal of Navigation, 58(3): 471-478.

Zhang J., Zhang K. F., Grenfell R. and Deakin RO@O0 Short note: On the relativistic Doppler effect for
precise velocity determination using GB&urnal of Geodesy, 80: 104-110.

Zhou H. R. and Kumar K. S. P. (1984). A currentistial model and adaptive algorithm for estimating
maneuvering targets [JNAA Journal of Guidance, 7(5): 596-602.

11



Tables:

Table. 1 The coefficient for different window lengtlkin=2 to 5)

Window lengthn

. n=2 n=3 n=4 n=5
Coefficient
-1 1 -1 1
J;
2 -3 4 -5
J,
3 -6 10
J3
4 -10
J4
5
Js
Table.2 Accuracies of all schemes for 1 seconadhiate
Schemes n=2 n=3 n=4 n=5
LS
Accuracy(m) m=2 m=2 m=3 m=2 m=3 m=4 m=2 m=3 m=4 m=5
X 0.414 0407 0440 0407 0506 0408 0414 0602 0416 0411 0414
0.644 0625 0623 0643 0.640 0651 0.645 0.678 0645 0.650 0.645
Raw data
0.385 0373 0396 0392 0425 0393 0.393 0475 0394 0402 0.389
Position 0.857 0.834 0859 085 0920 0863 0861 1.024 0863 0.868  0.859
X 1.104 0442 0496 0520 0.594 0468 0.830 0.736 0476 0.603  1.214
Outliers Y 1.232 0654 0658 0752 0.693 0708 1.042 0.763 0692 0.835  1.407
simulated data z 1.210 0415 0458 0540 0533 0463 0.889 0.642 0455 0631  1.317
Positon 2.049 0891 0942 1062 1057 0966 1.601 1.239 0955 1208 2278
Table.3 Accuracies of all schemes for 3 seconds\at
Schemes n=2 n=3 n=4 n=5
LS
Accuracy(m) m=2 m=2 m=3 m=2 m=3 m=4 m=2 m=3 m=4 m=5
X 0.410 0.728 1.331 0472 2162 0616 0439 3190 0.832 0.490 0419
Y 0.665 0.768 1.152 0661 1.776 0763 0652 2548 0.847 0.662 0.663
Raw data
0.395 0.609 1.010 0452 1540 0588 0403 2204 0.769 0.453 0.388
Positon 0.876 1.220 2.029 0930 3.194 1.143 0883 4640 1414 0940 0875
X 1582 1175 1.949 0935 3.014 1314 1083 4371 1479 1252 1401
Outliers Y 1.703 1.057 1595 1028 2.344 1123 1341 3.28 1.292  1.308 1628
simulated data z 1.742 1104 1704 1002 2419 1239 1262 3.336 1550 1.365 1.470
Position 2905 1.928 3.040 1713 4520 2126 2136 6.406 2501 2.268 2.603
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Figure 6. Differences between our WRA solutions ‘ang’ values for 1 s interval with outliers sinaéd data
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