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Abstract: All conventional Kalman filtering methods depend to a great extent on dynamic models for 

describing the motion state of vehicle. However, low cost GPS navigation systems do not provide velocity and 

acceleration measurements to construct dynamic models. Therefore, it is rather difficult to establish reasonable 

dynamic models. A windowing-recursive approach (WRA) which employs previous positions to predict the 

current position is proposed, the transition matrix is modeled for transforming the previous positions to the 

current one. Two typical transition matrices are constructed by numerical polynomial fitting and extrapolation. 

A real vehicular GPS experiment is carried out to demonstrate the WRA performances in two relative 

positioning scenarios. The data are processed by the least squares approach (LSA) and by WRA using the two 

developed transition matrices. The results show that the WRA performed excellently in a high sampling rate 

data. In case of a lower sampling rate, higher order polynomial fitting and extrapolation models work better 

than lower order models for a given window. In addition, the extrapolation models can alleviate the 

computation burdens significantly relative to the polynomial fitting models. 

 

Key words: GPS; Transition matrix; Windowing-recursive approach; Kalman filter 

 

1. Introduction 

 

In GPS kinematic positioning at the meter-level accuracy, pseudoranges are preferred to phase measurements 

because they are free of cycle-slips. However, we still face many challenges for pseudorange utilization 

particularly in urban areas due to signal degradation, blockages, outliers and lack of measurements (Kuusniemi 
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et al. 2004). The most important challenge in GPS navigation is how to efficiently improve the precision and 

reliability of real-time solution. 

Integrated navigation systems, such as INS/GPS, GPS/DR (Dead Reckoning), are introduced mainly to 

overcome the limitation of each individual navigation sensor and improve the reliability (Chen and Cross 1990, 

Sameh et al. 2007, Umar et al. 2007, Logan et al. 2003). However, such integrations are too expensive to be 

extensively used in low-cost navigation campaigns. Another alternative, the so-called map matching technique 

has also been applied to assist positioning in areas without GPS signal reception (Mohammed et al. 2006). It 

requires a large number of updated map data and expensive hardware. The phase-smoothed code (Hatch 1982) 

was proposed to decrease the pseudorange noise by linearly combining phase and pseudorange measurements 

in the case of no cycle-slips. If cycle slips exist or the accuracy of phase-smoothed code is lower than that of 

Doppler measurements, Doppler-aided technique can be used further to smooth code and thus improve its 

accuracy (Cheng 1999). As an instantaneous measurement that directly relates to the relative movement 

between the receiver and satellite, Doppler shift has been widely used in velocity determination (Bruton et al. 

1999, Zhang et al. 2006). Moreover, the position and velocity were trivially determined simultaneously by 

combining pseudorange and Doppler shifts (Mao et al. 2002). 

In target tracking area, a time correlated acceleration function and its probability density variance were 

modeled by Singer (1970) in order to achieve optimal tracking performance, which was further developed by 

Zhou and Kumar (1984) by adding constraint condition of acceleration between adjacent epochs. The typical 

constant velocity and acceleration dynamic models and a “no dynamics” model were comprehensively 

discussed and compared for GPS/INS positioning based on vehicle trajectories (Schwarz et al. 1989). Recently, 

in the high-frequency motion conditions, discrete singular convolution algorithm has been proposed to 

determine the state equation (El-Diasty et al. 2006). 

As an efficient sequential estimation algorithm, Kalman filter (KF) is extensively applied in navigation 

where observational errors and the predicted errors are assumed to be independent and normally distributed. 

Actually, unexpected errors exist in both state model and observation model. In order to balance the 

contributions of the state model and observation model to the final solution, some adaptively robust filters have 

been developed by Koch and Yang (1998) and Yang et al. (2001, 2002, 2003, 2005) in the frame of the robust 

M estimation (Huber 1981) and Bayesian estimation. 

Since the low cost GPS navigation system cannot provide the velocity and acceleration measurements, it is 

rather difficult to establish a reasonable dynamic model. For this reason, we will develop an alternative 

windowing-recursive approach (WRA), where the current position vector is derived from several previous 

position vectors by using a transition matrix that does not rely on the velocity and acceleration. Section 2 will 

derive a general representation of WRA. Section 3 will construct two kinds of transition matrix by numerical 

polynomial fitting and extrapolation. Real vehicular GPS experiments are described in section 4 and the 

concluding remarks are given in section 5. 

 

2. General representation of windowing-recursive approach 

 

The trajectory of a moving object can reasonably be assumed to be smoothed in a short time span. Therefore, 
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the position at the present epoch can be predicted more reliably with the positions of multiple historical epochs 

than with the position of only the latest epoch. Assuming that the time-window length contains n epochs, we 

construct the transition equations as 

( ) ( ), : 1 : 1x Φ x w− − − −= +k kk k n k k n k                            (2.1) 

where xk denotes a state vector at epoch k, ( ): 1x − −k n k  is a column vector consisting of stacked state vectors 

from epoch k-n to epoch k-1. The symbol wk  denotes a prediction error vector with the zero mean and 

covariance matrix wΣ k
. The transition matrix at epoch k is ( ), : 1Φ − −k k n k  , which transforms the states of the 

previous n epochs into the current one. 

Let 
( ): 1x̂Σ − −k n k

 be the covariance matrix of the historical state vector ( ): 1x̂ − −k n k , then the predicted position 

vector at epoch k and its corresponding covariance are derived by 

( ) ( ), : 1 : 1
ˆ

k k k n k k n k− − − −=x Φ x                             (2.2) 

and 

( ) ( ) ( ): 1ˆ, : 1 , : 1k kk n k

T
k k n k k k n k− −− − − −= +x wxΣ Φ Σ Φ Σ                  (2.3), 

respectively. The linearized observation equations at epoch k are symbolized as,  

k k k k= +l A x e                               (2.4) 

where Ak  is the design matrix of current state vector, and lk  is the measurement vector affected by 

normally distributed noise ek  with zero mean and co-variance matrix 2 1
0R Pσ −=k k . The known prior 

variance scalar is 2
0σ  and Pk  is the weight matrix of the measurements. By minimizing the weighted 

measurement residual vector ˆv A x l= −k k k k and predicted residual vector ˆxv x x= −
k k k , the Bayesian risk 

function is established by 

min :
k k k

k

T T
k k k kα+ x x xx

v P v v P v                          (2.5) 

where 2 1
0x xP Σσ −=

k k
denotes the weight matrix of predicted state vector. The symbol αk  is defined as an 

adaptive factor and generally we have 0α ≠k  (Yang and Gao 2005). The solution of minimal problem (2.5) 

is 

( )ˆ
k k k k k k= + −x x K l A x                          (2.6) 

( )ˆ

1
kk k k

kα
= − xxΣ I K A Σ                          (2.7) 

1
1 1

k k

T T
k k k k k

k kα α

−
 

= + 
 

x xK Σ A A Σ A R                 (2.8) 

where x̂Σ k
 is the covariance matrix of the Bayesian estimator. The correlation between ̂xk  and ( ): 1x̂ − −k n k  

should be rigorously considered when the time window moves forward. Hereby, the covariance matrix 
( ):x̂Σ −k n k

 

is expressed as, 
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( )

( ) ( )

( )

ˆ ˆ: 1 : 1

:

: 1

ˆ

ˆ

ˆ ˆ ˆ

k n k k k n k

k n k

k kk n k

T

− − − −

−

− −

 
 =
 
 

x xx

x

x x x

Σ Σ

Σ

Σ Σ

                       (2.9) 

Rewriting (2.6) we obtain, 

( )ˆ k k k k k k= − +x I K A x K l                          (2.10) 

Replacing kx  in (2.10) with (2.2) the alternative expression of (2.10) is 

( ) ( ) ( ), : 1 : 1
ˆ ˆk k k k kk k n k k n k− − − −= − +x I K A Φ x K l                  (2.11) 

Thus, the covariance matrix of ̂kx  and ( ): 1
ˆ

k n k− −x  is derived from (2.11) by the law of error propagation as 

follows  

( )
( ) ( ) ( ): 1 : 1ˆ ˆ ˆ, : 1k k n k k n kk k k k n k− − − −− −= −x x xΣ I K A Φ Σ                  (2.12) 

It is rather easy to update the window vector ( )1:x̂ − +k n k  and its corresponding covariance matrix 
( )1:x̂Σ − +k n k

 

which is a submatrix of (2.9). The WRA from epoch k-1 to k is summarized with the following steps (see 
Fig.1): 

( : 1)ˆ
k nk− −x

( : 1)ˆ k nk− −xΣ

kx kx
Σ

kK ˆ
kx ˆkxΣ ( : 1)ˆ ˆk k nk− −x xΣ

( 1: )
ˆ

k n k− +x

( 1: )ˆ k n k− +xΣ

 
Fig. 1.The computation process of WRA 

 

Step 1. Initialize the historical window information of (n-1) epochs to achieve the position vector ( ): 1x̂ − −k n k  

and its covariance matrix 
( ): 1x̂Σ − −k n k

. Then compute the predicted resultsxk  and xΣ k
 with (2.2) and 

(2.3); 

Step 2. Compute Kk , x̂k , x̂Σ k
, and 

( ): 1ˆ ˆx xΣ
− −k k n k

 with (2.8), (2.6), (2.7) and (2.12) respectively; 

Step 3. Update the window information, take the updated 
( )1:x̂Σ − +k n k

 out from (2.9) and store it along with the 

updated position vector ( )1:x̂ − +k n k ; 

Step 4. If no interruption occurs, implement Step 1. Otherwise, re-initialize the window-recursive process from 

the epoch k+1.  
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It is important to note that the position vectors of n epochs in the initialization process are computed only by 

the GPS measurements based on the LS adjustment. The computation burden of WRA does not strongly depend 

on the window length, because the only inversion operation in (2.8) is not related to the window length. 

Additionally, if the dimension of state vector is smaller than that of the measurement vector, the equivalent 

recursive formulae can be constructed to decrease the computation burden similar to the equivalent KF 

formulae (Koch and Yang 1998). In the case of the window length n=1 the following properties are assigned to 

WRA: 

(i)  If α=1,  WRA is essentially equivalent to the classical KF. 

(ii)   If α=1 and P is an equivalent weight matrix (Yang et al. 2001, Zhou 1989), WRA is equivalent to robust 

KF. 

(iii)   If α=0, WRA is equivalent to LS adjustment. 

(iv) If α=0 and P is an equivalent weight matrix, WRA is identical to robust LS adjustment. 

 

3. Modeling the transition matrix 

 

The most important benefit of WRA is using information of multiple historical epochs rather than only latest 

one. The different models are identified by the different transition matrices. In this section, we will establish 

two transition matrices by using the Newton interpolation model and polynomial fitting model. 

 

3.1. Extrapolation model 

 

The Newton interpolation and extrapolation method is a popular numerical analysis method, which is employed 

here to construct the transit matrix for its efficient performance. Assuming that the position vector is a function 

of time t, i.e., ( )x x= t , and xi  denotes the position vector at epoch it  and δ t  the time interval between 

consecutive epochs, the position at an arbitrary time can be expressed by the n-th order of Newton's forward 

differential extrapolation model as, 

( ) ( ), ,k n s k nt n t s t nδ− + −= +x x                          (3.1) 

where s denotes the s-th extrapolated epoch ( )≥s n  in time window and n is the order of forward 

extrapolation. By expanding (3.1) and truncating the terms with order higher than n, we obtain 

( ) ( )1 2 3
0 0 0 0

( 1) ( 1) ( 2)
,

1! 2! !
n

k n s n

s s s s s s n
t n s

n− +
− − ⋅⋅⋅ − += ∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ +x F F F F R    (3.2) 

where ( )Rn s  is the high-order remainder term. Let 
( )

( ) ( )1 1!

! ! !

− ⋅⋅⋅ − +
= =

−
n
s

s s s ns
C

s n n n
, then (3.2) 
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can be simplified as 

( ) 0 1 1 2 2 3 1
0 0 0 0, n n

k n s s s s st n C C C C −
− + = ∆ + ∆ + ∆ + ⋅⋅⋅+ ∆x F F F F             (3.3) 

where the small high-order term ( )Rn s  is disregarded. 0F∆m  with { }1,  2,  ... , ∈m n  is derived from 

the following recursion formulae: 

( )

1
0

2
0 1

3
0 2 1

4
0 3 2 1

1
1

0 1
0

2

3 3

          

1

k n

k n k n

k n k n k n

k n k n k n k n

m
m im i

m k n i
i

C

−

− + −

− + − + −

− + − + − + −

−
− −

− − +
=

∆ =

∆ = −

∆ = − +

∆ = − + −
⋅⋅⋅⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅

∆ = −∑

F x

F x x

F x x x

F x x x x

F x

               (3.4) 

Specially, for s= n, equation (3.3) is rewritten as 

( ) 0 1 1 2 2 3 1
0 0 0 0, n n

k k n s n n n nt n C C C C −
− += = ∆ + ∆ + ∆ + ⋅⋅⋅+ ∆x x F F F F          (3.5) 

Substituting (3.4) into (3.5), we obtain an alternative expression for xk  as 

( )
1

0 0

1x x
−

−
− +

= =

 
 = −  

 
∑ ∑
n i

i ji j
k n i k n j

i j

C C                       (3.6) 

According to the equation
1 1 1= = = =

   
=   

   
∑ ∑ ∑ ∑

n i n n

i j j i
i j j i j

a b b a , we easily rewrite (3.6) to be 

1

0

x x
−

− +
=

=∑
n

k j k n j
j

J                               (3.7) 

where the coefficient jJ  reads  

( ) { }
1

1       0,  1,  ... , 1
−

−

=

= − ∈ −∑
n

i j j i
j i n

i j

J C C j n                (3.8) 

The matrix form of (3.7) is  

( ): 1x Jx − −=k k n k                                 (3.9) 

where ( ) ( ) ( ) ( ): 1 1 1...x x x x− − − − + −
 =  

T
T T T

k n k k n k n k  represents a 3n column vector of positions for all n 

epochs in the window, [ ]1 2 3 3...J E ×= ⊗T

nJ J J is a 3 3× n  constant coefficient matrix, and ⊗  is 

the Kronecker product. In real application, the matrix J  is primarily computed offline and the coefficients for 
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2 5≤ ≤n  are presented in Table 1. Obviously, the transition matrix ( ), : 1Φ − −k k n k  in the extrapolation model is 

specified by the matrix J . 

 

3.2. Polynomial fitting model 

 

When the order of extrapolation is less than the number of epochs in the window, the elements of transition 

matrix should be estimated by LS. We use a polynomial fitting model here to construct the transition matrix.  

Assuming the fitting order is m (m<n), the polynomial model reads 

   

( ) ( ) ( )

1

2 1
1 1 2 3

2 1

1 1 2 3

...

... ...

1 1 ... 1

x a

x a a a a

x a a a a

δ δ δ

δ δ δ

−

−
− +

−
−

=

= + + + +

= + − + − + + −          

k n

m
k n m

m

k m

t t t

n t n t n t

       (3.10) 

where [ ]a = T

i iX iY iZa a a  is the column vector to be estimated. Rewriting (3.10) in matrix form, one 

obtains 

( ): 1x Ma ε− − = +k n k                             (3.11) 

where 

( ) ( )

1

3 3

1

1 0 ... 0

1 ...

... ... ... ...

1 1 ... 1

M E
δ δ

δ δ

−

×

−

 
 
 = ⊗ 
 

− −    

m

m

t t

n t n t

, 

1

2

...

a

a
a

a

 
 
 =
 
 
 m

, and ε  is the normally distributed 

noise vector. Define the weight matrix as
( ) ( ): 1 : 1

1
ˆ ˆx xP Σ

− − − −

−=
k n k k n k

, and then the LS based optimal estimator a  is 

calculated by 

( )( ) ( ) ( ): 1 : 1

1

ˆ ˆ : 1
ˆx xa M P M M P x

− − − −

−

− −=
k n k k n k

T T
k n k                 (3.12) 

Denoting ( ) 1

3 31 ...u Eδ δ −
×

 = ⊗
 

m
n t n t , the position of the current epoch is extrapolated using the 

fitted coefficients 

x ua=k                                 (3.13) 

Substituting (3.12) into (3.13), we obtain 

  
( )( ) ( ) ( ): 1 : 1

1

ˆ ˆ : 1
ˆx xx u M P M M P x

− − − −

−

− −=
k n k k n k

T T
k k n k                (3.14) 

Up to now, we have constructed the transition matrix ( ) ( )( ) ( ): 1 : 1

1

ˆ ˆ, : 1 x xΦ u M P M M P
− − − −

−

− − =
k n k k n k

T T
k k n k  for the 
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polynomial fitting model. In principle, in the polynomial fitting model, the polynomial constraint is imposed on 

the positions of multiple epochs. Thus the polynomial fitting model is, to a certain extent, able to resist the 

outliers and thus decreases their influences on the final result in the time window. In addition, the polynomial 

fitting model is reduced to special cases in the following scenarios: (i) if m=2, the fitting model is equivalent to 

the constant velocity model; and (ii) if m=3 it is equivalent to the acceleration model. The polynomial fitting 

model is reduced to the Newton extrapolation model when no redundant point exists in the time window and 

( ): 1x̂P
− −k n k

 is chosen as an identity matrix. 

 

4. Experiment and analysis 

 

The experiment data were collected with the sample interval of 1 s by two Topcon HiPer-Pro receivers on 22 

April 2008. Although the longest distance between the reference and rover stations is less than 3 km, various 

complex kinematic states are present. The double differenced observation model is used and the residual 

systematical errors are basically ignored due to their highly spatial correlation in such short distance. The C/A 

code measurements were utilized in the whole test. The trajectory is shown in Figure 2 and the velocities of the 

vehicle in the three components are in Figure 3. The precise results obtained by dual-frequency carrier phase 

are used as the actual values to evaluate the accuracies of the developed models. 

In the following, we will investigate the accuracies of our WRA for different window lengths, fitting orders 

and sampling intervals. In all experiments the weight matrix Pk  of double differenced GPS observations was 

rigorously derived from the identity weight matrix of undifferenced observations by using the law of error 

propagation. Different kw assigned leads to different solutions, which means that the stochastic state model 

error should be reasonably estimated in real-time. Much research has been carried out to determine the 

stochastic model errors (Wang 2000, Moore and Wang 2003, Hewitson and Wang 2007, Li et al. 2008, Geng 

and Wang 2008). Yang and Gao (2005) also proposed an optimal algorithm to balance the contributions of state 

model and observation model. If better results are desired, some work related to quality control, e.g. outliers 

detection and isolation, model error estimation must be added and correctly done according to previous studies. 

It has been proved that these methods and algorithms are very effective and practical to achieve good and even 

optimal results. Therefore, without affecting the validity and efficiency of our WRA, we selected for simplicity 

the co-variance matrix wΣ k
 as a 3 3×  diagonal matrix with the element of 0.2m2 according to some prior 

calculations. The extrapolation model and polynomial fitting model were used in the cases of n=m and n>m, 

respectively.  

The epoch-wise positions computed by LS approach are shown in Fig. 4(a) for the latter comparison purpose. 
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Obviously, the worse LS solution is generally assigned to the larger PDOP value (see Fig. 5). The two 

constructed transition matrix models of WRA are examined in the window length n from 2 to 5 with the fitting 

order m from 2 to n, and the accuracies in three coordinate components are computed by 

 
2 2 2

1 1 1                         

q q q

i i ii i i
X Y Z

X Y Z

q q q
σ σ σ= = =

∆ ∆ ∆
= = =∑ ∑ ∑

           (4.1) 

where ∆X , ∆Y , ∆Z  are the position differences between our WRA solutions and the actual ones , and 

σ X , σY  and σ Z  are the accuracies. Here q is the number of epochs. The computed accuracies are shown in 

upper part of Table 2. In order to demonstrate the performance of our WRA with contaminated data, satellite 

PRN 9 data was added with simulated outliers (15m) per 10 epochs. As shown in Fig. 4(b) the LS approach 

cannot resist the outliers and the accuracy of the solved positions dramatically falls down. The differences 

between the WRA solutions and actual values are illustrated in Fig. 6 and accuracies computed by (4.1) are 

presented in lower part of Table 2. It is observed from Table 2 that: (i) the WRA works as well as LS approach 

for processing clean raw data as long as the fitting order is higher than half of the window length; (ii) For 

processing outlier contaminated data, the WRA can obtain better results than LS approach. Especially in the 

case of the window length less than 4 epochs, the polynomial fitting model can usually get better results than 

the extrapolation model; (iii) The window length should be less than 5 epochs for the high sampling rate cases, 

since the longer window needs higher order fitting models which are easier to be affected by the outliers.  

It is worth to point out that the developed extrapolation model is equivalent to the ‘no dynamic’ model that 

was elaborated in Schwarz (1989) in the case of m=2 and n=2. For this reason we do not compare our WRA 

with KF approach. 

We further tested the performance of the WRA in the lower sampling rate case. The data is sampled by every 

3 seconds and the test strategy is the same as the former experiments. The statistics are shown in Table 3. It is 

obvious that the accuracies of WRA in Table 3 are generally worse than those in Table 2 for low order models 

(m≤3), but identical for high order models (m≥4). This means that the high order polynomial fitting model or 

extrapolation model are more suitable in the low sampling rate cases if the outliers has been resisted by the 

robust algorithm. 

 

5. Concluding remarks 

 

In this paper, a general WRA has been proposed for GPS navigation. Two kinds of transition matrices are 

constructed to specify the extrapolation and polynomial fitting models. The real vehicular GPS experiments are 

implemented in cases of high and low sampling intervals. The results show that: (i) WRA with the fitting order 

higher than half of the window length works as well as LS approach in processing the data without any outlier, 
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but WRA can achieve generally better results than LS approach in processing outlier contaminated data, 

especially in the case of the window length less than 4 epochs; (ii) in the high sampling case, the low order 

models can describe the motion states more adequately and achieve the optimal results in the window length 

less than 5 epochs. Conversely, in the low sampling case, the low order models cannot specify the motion states 

well enough and, thus high order models with longer window are necessary for achieving better performance. 

In other words, the time window length should be reasonably determined according to the kinematic state of 

different moving objects. In general, the varying velocity and acceleration of vehicle motion can be 

automatically specified in the high order fitting models of WRA and, therefore it does not need to construct the 

velocity and acceleration dynamical models for predicting the vehicular state epoch by epoch.  
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Tables: 
Table. 1 The coefficient J for different window length (n=2 to 5) 

Window length n 

Coefficient mJ  
n=2 n=3 n=4 n=5 

1J  
-1 1 -1 1 

2J  
2 -3 4 -5 

3J  
 3 -6 10 

4J  
  4 -10 

5J  
   5 

 

Table.2 Accuracies of all schemes for 1 second interval 

          Schemes 

Accuracy(m) 
LS 

n=2 n=3 n=4 n=5 

m=2 m=2 m=3 m=2 m=3 m=4 m=2 m=3 m=4 m=5 

Raw data 

X 0.414 0.407 0.440 0.407 0.506 0.408 0.414 0.602 0.416 0.411 0.414 

Y 0.644 0.625 0.623 0.643 0.640 0.651 0.645 0.678 0.645 0.650 0.645 

Z 0.385 0.373 0.396 0.392 0.425 0.393 0.393 0.475 0.394 0.402 0.389 

Position 0.857 0.834 0.859 0.856 0.920 0.863 0.861 1.024 0.863 0.868 0.859 

Outliers 

simulated data 

X 1.104 0.442 0.496 0.520 0.594 0.468 0.830 0.736 0.476 0.603 1.214 

Y 1.232 0.654 0.658 0.752 0.693 0.708 1.042 0.763 0.692 0.835 1.407 

Z 1.210 0.415 0.458 0.540 0.533 0.463 0.889 0.642 0.455 0.631 1.317 

Position 2.049 0.891 0.942 1.062 1.057 0.966 1.601 1.239 0.955 1.208 2.278 

 

Table.3 Accuracies of all schemes for 3 seconds interval 

          Schemes 

Accuracy(m) 
LS 

n=2 n=3 n=4 n=5 

m=2 m=2 m=3 m=2 m=3 m=4 m=2 m=3 m=4 m=5 

Raw data 

X 0.410 0.728 1.331 0.472 2.162 0.616 0.439 3.190 0.832 0.490 0.419 

Y 0.665 0.768 1.152 0.661 1.776 0.763 0.652 2.548 0.847 0.662 0.663 

Z 0.395 0.609 1.010 0.452 1.540 0.588 0.403 2.204 0.769 0.453 0.388 

Position 0.876 1.220 2.029 0.930 3.194 1.143 0.883 4.640 1.414 0.940 0.875 

Outliers 

simulated data 

X 1.582 1.175 1.949 0.935 3.014 1.314 1.083 4.371 1.479 1.252 1.401 

Y 1.703 1.057 1.595 1.028 2.344 1.123 1.341 3.28 1.292 1.308 1.628 

Z 1.742 1.104 1.704 1.002 2.419 1.239 1.262 3.336 1.550 1.365 1.470 

Position 2.905 1.928 3.040 1.713 4.520 2.126 2.136 6.406 2.501 2.268 2.603 
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Figures: 

    

        Figure 2. Vehicle trajectory             Figure 3. Velocities of X, Y, Z components 

  

 
Figure 4a (top). Differences between LS solutions  

          with raw data and the ‘true’ values                       Figure 5. PDOP distribution for all epochs 
Figure 4b (bottom). Differences between LS solutions 

with simulated outliers data and the ‘true’ values 
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Figure 6. Differences between our WRA solutions and ‘true’ values for 1 s interval with outliers simulated data 

 


