449 research outputs found

    Effects of Footstrike Pattern on Low Back Posture, Shock Attenuation, and Comfort During Running

    Full text link
    Purpose: Barefoot running (BF) is popular in the running community. Biomechanical changes occur with BF, especially when initial contact changes from rearfoot strike (RFS) to forefoot strike (FFS). In addition, changes in lumbar spine range of motion (ROM), particularly involving lumbar lordosis, have been associated with increased low back pain (LBP). However it is not known how changing from RFS to FFS affects lumbar lordosis or LBP. Thus, the purpose of this study was to determine if a change from RFS to FFS would change lumbar lordosis, and/or decrease shock attenuation, and/or change comfort levels in healthy recreational/experienced runners. Methods: Forty-three subjects performed a warm up on the treadmill where a self-selected footstrike pattern was determined. Instructions on running RFS/FFS were taught and two conditions were examined. Each condition consisted of 90 s of BF with RFS or FFS; order randomly assigned. A comfort questionnaire was completed after both conditions. Fifteen consecutive strides from each condition were extracted for analyses. Results: Statistically significant differences between FFS and RFS shock attenuation (p Conclusion: Change in footstrike from RFS to FFS decreased overall ROM in the lumbar spine but did not make a difference in flexion or extension in which the lumbar spine is positioned. Shock attenuation was greater in RFS. RFS was perceived a more comfortable running pattern

    Software for Secondary-School Learning About Robotics

    Get PDF
    The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded

    Facilitating Navigation Through Large Archives

    Get PDF
    Automated Visual Access (AVA) is a computer program that effectively makes a large collection of information visible in a manner that enables a user to quickly and efficiently locate information resources, with minimal need for conventional keyword searches and perusal of complex hierarchical directory systems. AVA includes three key components: (1) a taxonomy that comprises a collection of words and phrases, clustered according to meaning, that are used to classify information resources; (2) a statistical indexing and scoring engine; and (3) a component that generates a graphical user interface that uses the scoring data to generate a visual map of resources and topics. The top level of an AVA display is a pictorial representation of an information archive. The user enters the depicted archive by either clicking on a depiction of subject area cluster, selecting a topic from a list, or entering a query into a text box. The resulting display enables the user to view candidate information entities at various levels of detail. Resources are grouped spatially by topic with greatest generality at the top layer and increasing detail with depth. The user can zoom in or out of specific sites or into greater or lesser content detail

    Math Description Engine Software Development Kit

    Get PDF
    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov

    Effects of footstrike on low back posture, shock attenuation, and comfort in running

    Full text link
    To determine if a change from rearfoot strike (RFS) to forefoot strike (FFS) would change lumbar lordosis, influence shock attenuation, or change comfort levels in healthy recreational/experienced runners

    Adverse Impact of a History of Violence for Women with Breast, Cervical, Endometrial, or Overian Cancer

    Get PDF
    The experience of physical and sexual violence (victimization) is common among U.S. women and is associated with adverse health consequences. The study objectives were to estimate the prevalence of victimization in women with cancer and to examine associations with demographics, cancer screening, and cancer stage. METHODS: From 2004 to 2005, 101 women with breast, cervical, endometrial, or ovarian cancer were interviewed to collect demographics, cancer screening history, health care access/use, and violence history. Chisquare and Fisher exact tests were used test risk-factor associations. A multinomial logistic regression model was used for multivariable analysis. RESULTS: The prevalence of a history of violence was 48.5% (49/101 women), and within that group, 46.9% (23/49) had a positive childhood violence screen, 75.5% (37/49) had a positive adult screen, and 55% (27/49) reported sexual violence at any age. Women with a positive violence screen differed significantly from women with a negative screen in that they were younger (P .031), more often divorced (P.012), more likely to smoke (P.010), more often lacked commercial insurance (P.036), and had more advanced stage of disease (P.013), but they did not differ with regard to race, cancer type, education level, alcohol or drug use, or cancer screening compliance. Multivariable analysis revealed that only stage remained significant; women with a history of violence had a 2.6-fold increased chance of diagnosis in later stages (odds ratio 2.61, 95% confidence interval 1.03– 6.59). CONCLUSION: A history of violence in breast, ovarian, endometrial, and ovarian cancer patients was extremely common and correlated with advanced stage at diagnosis

    Characterizing Transition Temperature Gas in the Galactic Corona

    Get PDF
    We present a study of the properties of the transition temperature (T~10^5 K) gas in the Milky Way corona, based on measurements of OVI, NV, CIV, SiIV and FeIII absorption lines seen in the far ultraviolet spectra of 58 sightlines to extragalactic targets, obtained with Far-Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph. In many sightlines the Galactic absorption profiles show multiple components, which are analyzed separately. We find that the highly-ionized atoms are distributed irregularly in a layer with a scaleheight of about 3 kpc, which rotates along with the gas in the disk, without an obvious gradient in the rotation velocity away from the Galactic plane. Within this layer the gas has randomly oriented velocities with a dispersion of 40-60 km/s. On average the integrated column densities are log N(OVI)=14.3, log N(NV)=13.5, log N(CIV)=14.2, log N(SiIV)=13.6 and log N(FeIII)=14.2, with a dispersion of just 0.2 dex in each case. In sightlines around the Galactic Center and Galactic North Pole all column densities are enhanced by a factor ~2, while at intermediate latitudes in the southern sky there is a deficit in N(OVI) of about a factor 2, but no deficit for the other ions. We compare the column densities and ionic ratios to a series of theoretical predictions: collisional ionization equilibrium, shock ionization, conductive interfaces, turbulent mixing, thick disk supernovae, static non-equilibrium ionization (NIE) radiative cooling and an NIE radiative cooling model in which the gas flows through the cooling zone. None of these models can fully reproduce the data, but it is clear that non-equilibrium ionization radiative cooling is important in generating the transition temperature gas.Comment: 99 pages, 11 figures, with appendix on Cooling Flow model; only a sample of 5 subfigures of figure 2 included - full set of 69 available through Ap

    A Close Companion Search Around L Dwarfs Using Aperture Masking Interferometry and Palomar Laser Guide Star Adaptive Optics

    Get PDF
    We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of ΔK ~ 2.3 for separations between 1.2λ/D-4λ/D and ΔK ~ 1.4 at 2/3λ/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored

    Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    Get PDF
    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies

    Simulation of surface ozone pollution in the Central Gulf Coast region during summer synoptic condition using WRF/Chem air quality model

    Get PDF
    AbstractWRF/Chem, a fully coupled meteorology–chemistry model, was used for the simulation of surface ozone pollution over the Central Gulf Coast region in Southeast United States of America (USA). Two ozone episodes during June 8–11, 2006 and July 18–22, 2006 characterized with hourly mixing ratios of 60–100ppbv, were selected for the study. Suite of sensitivity experiments were conducted with three different planetary boundary layer (PBL) schemes and three land surface models (LSM). The results indicate that Yonsei–University (YSU) PBL scheme in combination with NOAH and SOIL LSMs produce better simulations of both the meteorological and chemical species than others. YSU PBL scheme in combination with NOAH LSM had slightly better simulation than with SOIL scheme. Spatial comparison with observations showed that YSUNOAH experiment well simulated the diurnal mean ozone mixing ratio, timing of diurnal cycle as well as range in ozone mixing ratio at most monitoring stations with an overall correlation of 0.726, bias of –1.55ppbv, mean absolute error of 8.11ppbv and root mean square error of 14.5ppbv; and with an underestimation of 7ppbv in the daytime peak ozone and about 8% in the daily average ozone. Model produced 1–hr, and 8–hr average ozone values were well correlated with corresponding observed means. The minor underestimation of daytime ozone is attributed to the slight underestimation of air temperature which tend to slow–down the ozone production and overestimation of wind speeds which transport the produced ozone at a faster rate. Simulated mean horizontal and vertical flow patterns suggest the role of the horizontal transport and the PBL diffusion in the development of high ozone during the episode. Overall, the model is found to perform reasonably well to simulate the ozone and other precursor pollutants with good correlations and low error metrics. Thus the study demonstrates the potential of WRF/Chem model for air quality prediction in coastal environments
    corecore