113 research outputs found

    Mass Diffusion Coefficient Of Desiccants For Dehumdification Applications: Silica Aerogels And Silica Aerogel Coatings On Metal Foams

    Get PDF
    Silica aerogels prepared by the sol-gel process are often used as solid desiccants in enthalpy wheels for dehumidifying ventilation air in air-conditioning systems. These hygroscopic materials have good moisture adsorption and desorption characteristics due to their porous structure. The current study is focused on the evaluation of the mass diffusivity of solid silica aerogels and silica aerogel coatings on substrates, which determines the rate at which a dehumidification process can be performed. The mass diffusivity of silica aerogels is affected by their porous structure which depends on the synthesis technique used to prepare the silica aerogels. The sol-gel process is used to prepared silica aerogels using various basic (ammonium hydroxide, sodium hydroxide, potassium hydroxide) and acidic (hydrofluoric acid, steric acid, hydrogen peroxide) catalysts with the same precipitator (tetra methyl orthosilicate-TMOS) and solvent (methanol). Scanning electron microscopy is used to analyze the microstructure of supercritically dried aerogels. The dynamic vapor sorption method is used to determine the effective mass diffusivity for the different silica aerogels. It is found that the mass diffusivity is related to the microstructure of silica aerogels, which depends on the catalysts used in the sol-gel process; however, the value for mass diffusivities for solid desiccants and desiccant coatings are similar. In addition, a parametric study is conducted to determine the effect of relative humidity and temperature on the adsorption and desorption mass diffusivity

    Adsorption and Desorption Isotherms Of Desiccants for Dehumidification Applications: Silica Aerogels and Silica Aerogel Coatings on Metal Foams

    Get PDF
    Silica aerogels are frequently employed as solid desiccants in enthalpy wheels for dehumidifying the supply stream in air-conditioning systems. These desiccant materials possess good moisture adsorption and desorption characteristics due to their porous structure. Analysis of adsorption and desorption isotherms is critical for performance characterization and is often performed to evaluate the capacity and transient performance of desiccant-based dehumidification systems. The current study is focused on the adsorption and desorption isotherms of solid silica aerogels and silica aerogel coatings on open-cell metal-foam substrates. The sol-gel process is adopted to synthesize silica aerogels using different basic (ammonium hydroxide, sodium hydroxide, potassium hydroxide) and acidic (hydrofluoric acid, steric acid, hydrogen peroxide) catalysts, with the same precipitator (tetra methyl orthosilicate-TMOS) and solvent (methanol). Scanning electron microscopy is used to characterize the microstructure of super-critically dried aerogels and adsorption/desorption isotherms for the different samples are obtained by the dynamic vapor sorption method. The steady-state moisture adsorption and desorption capacity of silica aerogels is affected by their porous structure, which depends on the synthesis technique used to prepare the silica aerogels. For the silica aerogel coatings on metal foams, the substrate structure and surface area also play an important role. The effect of the substrate surface area on adsorption/desorption capacity is analyzed by comparing the isotherms for solid silica aerogel samples, and silica aerogels coatings on flat plates and on metal foams with different pore sizes

    Decoherence of tripartite states - a trapped ion coupled to an optical cavity

    Full text link
    We investigate the non-dissipative decoherence of three qubit system obtained by manipulating the state of a trapped two-level ion coupled to an optical cavity. Modelling the environment as a set of noninteracting harmonic oscillators, analytical expressions for the state operator of tripartite composite system, the probability of generating maximally entangled GHZ state, and the population inversion have been obtained. The pointer observable is the energy of the isolated quantum system. Coupling to environment results in exponential decay of off diagonal matrix elements of the state operator with time as well as a phase decoherence of the component states. Numerical calculations to examine the time evolution of GHZ state generation probability and population inversion for different system environment coupling strengths are performed. Using negativity as an entanglement measure and linear entropy as a measure of mixedness, the entanglement dynamics of the tripartite system in the presence of decoherence is analysed.Comment: Revised version, errors corrected and references added. 12 pages, 6 figures, Presented at ICSSUR May 2005, Besancon, Franc

    Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication

    Get PDF
    To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae), we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2. In a panel of inbred fly lines, we found that a transposable element insertion in the protein coding sequence of CHKov1 is associated with increased resistance to infection. Previous research has shown that this insertion results in a truncated messenger RNA that encodes a far shorter protein than the susceptible allele. This resistant allele has rapidly increased in frequency under directional selection and is now the commonest form of the gene in natural populations. Using genetic mapping and site-specific recombination, we identified a third genotype with considerably greater resistance that is currently rare in the wild. In these flies there have been two duplications, resulting in three copies of both the truncated allele of CHKov1 and CHKov2 (one of which is also truncated). Remarkably, the truncated allele of CHKov1 has previously been found to confer resistance to organophosphate insecticides. As estimates of the age of this allele predate the use of insecticides, it is likely that this allele initially functioned as a defence against viruses and fortuitously “pre-adapted” flies to insecticides. These results demonstrate that strong selection by parasites for increased host resistance can result in major genetic changes and rapid shifts in allele frequencies; and, contrary to the prevailing view that resistance to pathogens can be a costly trait to evolve, the pleiotropic effects of these changes can have unexpected benefits

    Climate sensitivity of shrub growth across the tundra biome

    Get PDF
    The tundra biome is experiencing rapid temperature increases that have been linked to a shift in tundra vegetation composition towards greater shrub dominance. Shrub expansion can amplify warming by altering the surface albedo, energy and water balance, and permafrost temperatures. To account for these feedbacks, global climate models must include realistic projections of vegetation dynamics, and in particular tundra shrub expansion, yet the mechanisms driving shrub expansion remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual growth of shrub species provide a previously untapped resource to explore climate-growth relationships across the tundra biome. We analysed a dataset of approximately 42,000 annual growth records from 1821 individuals, comprising 25 species from eight genera, from 37 arctic and alpine sites. Our analyses demonstrate that the sensitivity of shrub growth to climate was (1) heterogeneous across the tundra biome, (2) greater at sites with higher soil moisture and (3) strongest for taller shrub species growing at the northern or upper elevational edge of their range. Across latitudinal gradients in the Arctic, climate sensitivity of growth was greatest at the boundary between low- and high-arctic vegetation zones, where permafrost conditions are changing and the majority of the global permafrost soil carbon pool is stored. Thus, in order to more accurately estimate feedbacks among shrub change, albedo, permafrost thaw, carbon storage and climate, the observed variation in climate-growth relationships of shrub species across the tundra biome will need to be incorporated into earth system models.JRC.H.3-Forest Resources and Climat

    Seismic evidence for fluids in fault zones on top of the subducting Cocos Plate beneath Costa Rica

    Get PDF
    Author Posting. © The Authors, 2010. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 181 (2010): 997-1016, doi:10.1111/j.1365-246X.2010.04552.x.In the 2005 TICOCAVA explosion seismology study in Costa Rica we observed crustal turning waves with a dominant frequency of ~10 Hz on a linear array of short-period seismometers from the Pacific Ocean to the Caribbean Sea. On one of the shot records, from Shot 21 in the backarc of the Cordillera Central, we also observed two seismic phases with an unusually high dominant frequency (~20 Hz). These two phases were recorded in the forearc region of central Costa Rica and arrived ~7 s apart and 30 to 40 s after the detonation of Shot 21. We considered the possibility that these secondary arrivals were produced by a local earthquake that may have happened during the active-source seismic experiment. Such high-frequency phases following Shot 21 were not recorded after Shots 22, 23, and 24, all in the backarc of Costa Rica, which might suggest that they were produced by some other source. However, earthquake dislocation models cannot produce seismic waves of such high frequency with significant amplitude. In addition, we would have expected to see more arrivals from such an earthquake on other seismic stations in central Costa Rica. We therefore investigate whether the high-frequency arrivals may be the result of a deep seismic reflection from the subducting Cocos plate. The timing of these phases is consistent with a shear wave from Shot 21 that was reflected as a compressional (SxP) and a shear (SxS) wave at the top of the subducting Cocos slab between 35 and 55 km depth. The shift in dominant frequency from ~10 Hz in the downgoing seismic wave to ~20 Hz in the reflected waves requires a particular seismic structure at the interface between the subducting slab and the forearc mantle in order to produce a substantial increase in reflection coefficients with frequency. The spectral amplitude characteristics of the SxP and SxS phases from Shot 21 are consistent with a very high Vp/Vs ratio of 6 in ~5 m thick, slab-parallel layers. This result suggests that a system of thin shear zones near the plate interface beneath the forearc is occupied by hydrous fluids under near-lithostatic conditions. The overpressured shear zone probably takes up fluids from the downgoing slab, and it may control the lower limit of the seismogenic zone.This work was funded by the US National Science Foundation MARGINS programme

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Hearing loss affects access to spoken language, which can affect cognition and development, and can negatively affect social wellbeing. We present updated estimates from the Global Burden of Disease (GBD) study on the prevalence of hearing loss in 2019, as well as the condition's associated disability. Methods We did systematic reviews of population-representative surveys on hearing loss prevalence from 1990 to 2019. We fitted nested meta-regression models for severity-specific prevalence, accounting for hearing aid coverage, cause, and the presence of tinnitus. We also forecasted the prevalence of hearing loss until 2050. Findings An estimated 1·57 billion (95% uncertainty interval 1·51–1·64) people globally had hearing loss in 2019, accounting for one in five people (20·3% [19·5–21·1]). Of these, 403·3 million (357·3–449·5) people had hearing loss that was moderate or higher in severity after adjusting for hearing aid use, and 430·4 million (381·7–479·6) without adjustment. The largest number of people with moderate-to-complete hearing loss resided in the Western Pacific region (127·1 million people [112·3–142·6]). Of all people with a hearing impairment, 62·1% (60·2–63·9) were older than 50 years. The Healthcare Access and Quality (HAQ) Index explained 65·8% of the variation in national age-standardised rates of years lived with disability, because countries with a low HAQ Index had higher rates of years lived with disability. By 2050, a projected 2·45 billion (2·35–2·56) people will have hearing loss, a 56·1% (47·3–65·2) increase from 2019, despite stable age-standardised prevalence. Interpretation As populations age, the number of people with hearing loss will increase. Interventions such as childhood screening, hearing aids, effective management of otitis media and meningitis, and cochlear implants have the potential to ameliorate this burden. Because the burden of moderate-to-complete hearing loss is concentrated in countries with low health-care quality and access, stronger health-care provision mechanisms are needed to reduce the burden of unaddressed hearing loss in these settings

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Get PDF
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
    corecore