405 research outputs found

    Dominant genetic effects on corneal astigmatism: The genes in myopia (GEM) twin study

    Get PDF
    Purpose: This study was conducted to assess the relative influence of genetics and environment on corneal astigmatism and corneal curvature in a large sample of twins. Methods: A total of 612 twin pairs (345 monozygotic [MZ] and 267 dizygotic [DZ]) aged between 18 and 86 years (mean age, 52.11 &#0177; 15.85 years) were recruited from the Australian Twin Registry (ATR). Each subject completed a general questionnaire, undertook a dilated eye examination, including ocular biometric measurements, and contributed a blood sample. Corneal astigmatism was defined as the absolute difference between the K1 and K2 meridians and corneal curvature as the average of K1 and K2. Results: Intrapair correlations were significantly higher (P < 0.001) in MZ twin pairs compared with those in DZ twin pairs for both corneal astigmatism (CA; r mz = 0.48 vs. r dz = 0.13) and corneal curvature (CC; r mz = 0.84 vs. r dz = 0.41). A sex-limited model with parameters estimating additive genetic, nonadditive genetic, and unique environmental influences (denoted ADE) was the most parsimonious model explaining both measures. Heritability estimates were as high as 60% and 71% for CA and CC, respectively. Conclusions: This study provides evidence that genetic factors explain interindividual variation in CA and CC, with nonadditive genetic factors explaining most of the variance due to those genetic factors. Heritability estimates were sex specific and indicate the need for future linkage studies for the identification of genes involved in the etiology of CA and CC

    Vacuum Stability Higgs Mass Bound Revisited with Implications for Extra Dimension Theories

    Get PDF
    We take the standard model to be an effective theory including higher dimensional operators suppressed by scale Λ\Lambda and re-examine the higgs mass bounds from the requirements of vacuum stability. Our results show that the effects of the higher dimensional operators on the higgs mass limits are significant. As an implication of our results, we study the vacuum stability higgs mass bounds in theories with extra dimensions.Comment: Latex, 14 pages, 1 figure. Added references. To appear in Phys. Rev.

    Syntaxin 1 Ser14 phosphorylation is required for nonvesicular dopamine release

    Get PDF
    Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser(14) by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release

    Vitamin A supplementation in Tanzania: the impact of a change in programmatic delivery strategy on coverage.

    Get PDF
    BACKGROUND\ud \ud Efficient delivery strategies for health interventions are essential for high and sustainable coverage. We report impact of a change in programmatic delivery strategy from routine delivery through the Expanded Programme on Immunization (EPI+) approach to twice-yearly mass distribution campaigns on coverage of vitamin A supplementation in Tanzania\ud \ud METHODS\ud \ud We investigated disparities in age, sex, socio-economic status, nutritional status and maternal education within vitamin A coverage in children between 1 and 2 years of age from two independent household level child health surveys conducted (1) during a continuous universal targeting scheme based on routine EPI contacts for children aged 9, 15 and 21 months (1999); and (2) three years later after the introduction of twice-yearly vitamin A supplementation campaigns for children aged 6 months to 5 years, a 6-monthly universal targeting scheme (2002). A representative cluster sample of approximately 2,400 rural households was obtained from Rufiji, Morogoro Rural, Kilombero and Ulanga districts. A modular questionnaire about the health of all children under the age of five was administered to consenting heads of households and caretakers of children. Information on the use of child health interventions including vitamin A was asked.\ud \ud RESULTS\ud \ud Coverage of vitamin A supplementation among 1-2 year old children increased from 13% [95% CI 10-18%] in 1999 to 76% [95%CI 72-81%] in 2002. In 2002 knowledge of two or more child health danger signs was negatively associated with vitamin A supplementation coverage (80% versus 70%) (p = 0.04). Nevertheless, we did not find any disparities in coverage of vitamin A by district, gender, socio-economic status and DPT vaccinations.\ud \ud CONCLUSION\ud \ud Change in programmatic delivery of vitamin A supplementation was associated with a major improvement in coverage in Tanzania that was been sustained by repeated campaigns for at least three years. There is a need to monitor the effect of such campaigns on the routine health system and on equity of coverage. Documentation of vitamin A supplementation campaign contacts on routine maternal and child health cards would be a simple step to facilitate this monitoring

    Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen:Genome sequence of pearl millet downy mildew pathogen

    Get PDF
    Sclerospora graminicola pathogen is one of the most important biotic production constraints of pearl millet worldwide. We report a de novo whole genome assembly and analysis of pathotype 1. The draft genome assembly contained 299,901,251 bp with 65,404 genes. Pearl millet [Pennisetum glaucum (L.) R. Br.], is an important crop of the semi-arid and arid regions of the world. It is capable of growing in harsh and marginal environments with highest degree of tolerance to drought and heat among cereals (1). Downy mildew is the most devastating disease of pearl millet caused by Sclerospora graminicola (sacc. Schroet), particularly on genetically uniform hybrids. Estimated annual grain yield loss due to downy mildew is approximately 10?80 % (2-7). Pathotype 1 has been reported to be the highly virulent pathotype of Sclerospora graminicola in India (8). We report a de novo whole genome assembly and analysis of Sclerospora graminicola pathotype 1 from India. A susceptible pearl millet genotype Tift 23D2B1P1-P5 was used for obtaining single-zoospore isolates from the original oosporic sample. The library for whole genome sequencing was prepared according to the instructions by NEB ultra DNA library kit for Illumina (New England Biolabs, USA). The libraries were normalised, pooled and sequenced on Illumina HiSeq 2500 (Illumina Inc., San Diego, CA, USA) platform at 2 x100 bp length. Mate pair (MP) libraries were prepared using the Nextera mate pair library preparation kit (Illumina Inc., USA). 1 ?g of Genomic DNA was subject to tagmentation and was followed by strand displacement. Size selection tagmented/strand displaced DNA was carried out using AmpureXP beads. The libraries were validated using an Agilent Bioanalyser using DNA HS chip. The libraries were normalised, pooled and sequenced on Illumina MiSeq (Illumina Inc., USA) platform at 2 x300 bp length. The whole genome sequencing was performed by sequencing of 7.38 Gb with 73,889,924 paired end reads from paired end library, and 1.15 Gb with 3,851,788 reads from mate pair library generated from Illumina HiSeq2500 and Illumina MiSeq, respectively. The sequences were assembled using various assemblers like ABySS, MaSuRCA, Velvet, SOAPdenovo2, and ALLPATHS-LG. The assembly generated by MaSuRCA (9) algorithm was observed superior over other algorithms and hence used for scaffolding using SSPACE. Assembled draft genome sequence of S. graminicola pathotype 1 was 299,901,251 bp long, with a 47.2 % GC content consisting of 26,786 scaffolds with N50 of 17,909 bp with longest scaffold size of 238,843 bp. The overall coverage was 40X. The draft genome sequence was used for gene prediction using AUGUSTUS. The completeness of the assembly was investigated using CEGMA and revealed 92.74% proteins completely present and 95.56% proteins partially present, while BUSCO fungal dataset indicated 64.9% complete, 12.4% fragmented, 22.7% missing out of 290 BUSCO groups. A total of 52,285 predicted genes were annotated using BLASTX and 38,120 genes were observed with significant BLASTX match. Repetitive element analysis in the assembly revealed 8,196 simple repeats, 1,058 low complexity repeats and 5,562 dinucleotide to hexanucleotide microsatellite repeats.publishersversionPeer reviewe

    Rapid nanopore sequencing and predictive susceptibility testing of positive blood cultures from intensive care patients with sepsis

    Get PDF
    ABSTRACT We aimed to evaluate the performance of Oxford Nanopore Technologies (ONT) sequencing from positive blood culture (BC) broths for bacterial identification and antimicrobial susceptibility prediction. Patients with suspected sepsis in four intensive care units were prospectively enrolled. Human-depleted DNA was extracted from positive BC broths and sequenced using ONT (MinION). Species abundance was estimated using Kraken2, and a cloud-based system (AREScloud) provided in silico predictive antimicrobial susceptibility testing (AST) from assembled contigs. Results were compared to conventional identification and phenotypic AST. Species-level agreement between conventional methods and AST predicted from sequencing was 94.2% (49/52), increasing to 100% in monomicrobial infections. In 262 high-quality AREScloud AST predictions across 24 samples, categorical agreement (CA) was 89.3%, with major error (ME) and very major error (VME) rates of 10.5% and 12.1%, respectively. Over 90% CA was achieved for some taxa (e.g.,Staphylococcus aureus) but was suboptimal for Pseudomonas aeruginosa. In 470 AST predictions across 42 samples, with both high quality and exploratory-only predictions, overall CA, ME, and VME rates were 87.7%, 8.3%, and 28.4%. VME rates were inflated by false susceptibility calls in a small number of species/antibiotic combinations with few representative resistant isolates. Time to reporting from sequencing could be achieved within 8–16 h from BC positivity. Direct sequencing from positive BC broths is feasible and can provide accurate predictive AST for some species. ONT-based approaches may be faster but significant improvements in accuracy are required before it can be considered for clinical use. IMPORTANCE Sepsis and bloodstream infections carry a high risk of morbidity and mortality. Rapid identification and susceptibility prediction of causative pathogens, using Nanopore sequencing direct from blood cultures, may offer clinical benefit. We assessed this approach in comparison to conventional phenotypic methods and determined the accuracy of species identification and susceptibility prediction from genomic data. While this workflow holds promise, and performed well for some common bacterial species, improvements in sequencing accuracy and more robust predictive algorithms across a diverse range of organisms are required before this can be considered for clinical use. However, results could be achieved in timeframes that are faster than conventional phenotypic methods
    corecore