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ABSTRACT We aimed to evaluate the performance of Oxford Nanopore Technologies 

(ONT) sequencing from positive blood culture (BC) broths for bacterial identification 

and antimicrobial susceptibility prediction. Patients with suspected sepsis in four 

intensive care units were prospectively enrolled. Human-depleted DNA was extracted 

from positive BC broths and sequenced using ONT (MinION). Species abundance was 

estimated using Kraken2, and a cloud-based system (AREScloud) provided in silico 

predictive antimicrobial susceptibility testing (AST) from assembled contigs. Results were 

compared to conventional identification and phenotypic AST. Species-level agreement 

between conventional methods and AST predicted from sequencing was 94.2% (49/52), 

increasing to 100% in monomicrobial infections. In 262 high-quality AREScloud AST 

predictions across 24 samples, categorical agreement (CA) was 89.3%, with major error 

(ME) and very major error (VME) rates of 10.5% and 12.1%, respectively. Over 90% 

CA was achieved for some taxa (e.g., Staphylococcus aureus) but was suboptimal for 

Pseudomonas aeruginosa. In 470 AST predictions across 42 samples, with both high 

quality and exploratory-only predictions, overall CA, ME, and VME rates were 87.7%, 

8.3%, and 28.4%. VME rates were inflated by false susceptibility calls in a small number 

of species/antibiotic combinations with few representative resistant isolates. Time to 

reporting from sequencing could be achieved within 8–16 h from BC positivity. Direct 

sequencing from positive BC broths is feasible and can provide accurate predictive AST 

for some species. ONT-based approaches may be faster but significant improvements in 

accuracy are required before it can be considered for clinical use.

IMPORTANCE Sepsis and bloodstream infections carry a high risk of morbidity and 

mortality. Rapid identification and susceptibility prediction of causative pathogens, using 

Nanopore sequencing direct from blood cultures, may offer clinical benefit. We assessed 

this approach in comparison to conventional phenotypic methods and determined the 

accuracy of species identification and susceptibility prediction from genomic data. While 

this workflow holds promise, and performed well for some common bacterial species, 

improvements in sequencing accuracy and more robust predictive algorithms across 

a diverse range of organisms are required before this can be considered for clinical 

use. However, results could be achieved in timeframes that are faster than conventional 

phenotypic methods.

KEYWORDS long-read whole-genome sequencing, bloodstream infection, nanopore

S epsis is a major cause of morbidity and mortality. Rapid pathogen identification 

and antimicrobial susceptibility phenotyping is critical to selection of appropriate 
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treatment and ensuring optimal patient outcomes (1, 2). Current pathogen identification 

and culture-based antimicrobial susceptibility testing (AST) can take up to 3 days, or 

longer. Consequently, rapid molecular detection and gene profiling methodologies are 

needed (2–4), especially in an era of an increasing prevalence of antimicrobial resistance.

We have previously demonstrated the application of Illumina-based sequencing 

from positive blood culture broths (5). This approach showed reasonable performance 

in both species-level identification and predictive AST from genomic data, but there 

were few advantages over conventional methods in terms of turn-around times to 

clinical reporting. In this study, we aimed to evaluate the use of Oxford Nanopore 

Technologies (ONT) sequencing, using a similar approach and an established DNA 

extraction method, to determine whether reductions in turn-around times can be 

achieved without sacrificing diagnostic performance. We compared a sequencing-based 

predictive AST tool to conventional culture-based methods in order to determine 

whether this approach could be applicable in a diagnostic laboratory and achieve 

acceptable performance characteristics.

MATERIALS AND METHODS

This was a sub-study of the DIRECT program: a prospective, observational multicentre 

study of children and adults presenting to the intensive care unit (ICU) with clinical 

features of sepsis (6). Patients were screened for enrolment in four ICUs (three adult, 

one paediatric) in Brisbane, Australia (Royal Brisbane and Women’s Hospital, The Prince 

Charles Hospital, Princess Alexandra Hospital, and Queensland Children’s Hospital). 

Patients who met inclusion criteria and none of the exclusion criteria were eligible for 

enrolment (Table 1).

Sampling

This study included patients with positive blood cultures and presence of bacteria 

confirmed by Gram stain and microscopy. Samples with non-bacterial species (e.g., 

Candida) were excluded from further analysis (as the analysis pipelines are optimised 

for prokaryotic organisms). Samples with likely contamination (e.g., mixed coagulase-

staphylococci), which were not worked up further by the clinical lab for identification 

or susceptibility testing, were also not analysed further. For some samples, susceptibil

ity testing was not routinely performed on cultured isolates (e.g., anaerobes); hence, 

predictive AST was not assessed.

Blood culture bottles (FA plus, FN plus, and paediatric PF plus bottles; bioMérieux) 

were removed from BACT/Alert Virtuo System once flagged positive with microbial 

growth on Gram stain. A de-identified 10 mL aliquot of the positive blood culture 

broth was processed by a blinded researcher in a separate research lab (The University 

of Queensland, Centre for Clinical Research), located on the same campus, within 1.5 

h (Fig. 1). An uninoculated blood culture broth was also sampled to determine the 

extent of background DNA contamination. Methods for DNA extraction have been 

detailed previously (5). In brief, host genomic DNA (gDNA) was depleted using the 

TABLE 1 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

a) Age > 1 month a) Inability to gain informed consent

b) Admitted to ICU b) Neonates (<1 month age)

c) Decision to treat for suspected sepsisb c) Imminent death likely

d) Blood cultures collected within 12 h d) Palliative care intent

e) Commenced on IV antibiotics within 24 h, or a 

change in antibiotics initiated within 24 h for a new 

episode of infection

e) On renal replacement therapya

f ) Use of extra-corporeal membrane 

oxygenation (ECMO)a

aNecessary as the main study included therapeutic drug monitoring and dose optimisation.
bDefined as suspected/proven infection with evidence of end organ dysfunction.
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MolYsis Complete and MolYsis Basic kits (Molzym, Germany) 0.2 mL and 1 mL protocols, 

respectively, according to manufacturer’s instructions, (with minor modifications), then 

centrifuged at 10,000g for 30 s, and the supernatant removed (5). The microbial pellet 

then underwent further gDNA extraction using UltraClean kits. Samples were extracted 

for genomic DNA upon receipt and the remaining sample frozen at −80°C, and if 

required, thawed to room temperature from frozen.

DNA quality and purity checks were undertaken using the QUBIT fluorometer (Life 

Technologies), NanoDrop 2000 Spectrophotometer (Thermo Scientific), and Agilent 

TapeStation 4150 using Genomic DNA ScreenTape and Reagents. For comparison, 

cultured isolates from the positive BC broths were also retrieved from the clinical 

laboratory for whole genome sequencing using Illumina (Fig. 1).

FIG 1 Workflow for Nanopore sequencing and conventional analysis of positive blood cultures.
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Sequencing

Libraries were prepared using the Rapid Barcoding Sequencing or Nanopore Genomic 

DNA Ligation kit with Native barcoding according to manufacturer’s instructions (Oxford 

Nanopore Technologies). Libraries were loaded into the R9.4.1 flow cell and run on the 

MinION MK1B device. After flow cell quality checks, all sequencing utilized the flow cell 

priming kit (EXP-FLP002) and sequencing commenced at −180 mV; voltage drift was 

accounted for where the flow cell went through a wash protocol. The sequencing runs 

were monitored with MinKNOW version 21.05.25 core 4.3.12. Fast basecalling model 

was applied with Bream version 6.2.6 and Guppy version 5.0.16 (version 3.2.9 used prior 

to February 2021). Libraries were run for 72 h but produced adequate data for further 

analysis within 6–12 h in the majority of samples. Final run QC analysis was undertaken 

with PycoQC prior to bioinformatic analysis.

In addition, pure colonies of bacteria isolated from positive blood cultures were 

also sequenced, using DNA extracted by QIAGEN DNeasy Ultraclean Microbial Kit, with 

quantification by Life Technologies QUBIT fluorometer and library preparation with 

Illumina ILMN DNA LP tagmentation. Library size was determined by Agilent TapeSta

tion 4150 using D1000 High Sensitivity kit. Sequencing was performed on the Illumina 

MiniSeq platform with the 300 cycle output reagent kit (Fig. 1).

Metagenome assemblies, taxonomic profiling, and in-silico WGS-AST

Assembly and binning for predictive AST was performed using a previously published 

workflow (7). Raw reads were trimmed and quality filtered using Nanofilt 2.8 (8) and 

mapped against the GRCh38 genome using minimap 2.24 (9) to remove host reads. 

Taxonomy was assigned using Kraken2 (10). Assignment was done for the whole 

assembly from all input reads and for metagenomic bins using input reads mapping 

to the individual metagenomic bin with minimap 2.24. Where possible given input 

sequencing depth, retained reads were assembled with flye 2.9 (11) and parameters 

"--nano-raw --meta -- iterations 3." Genome assemblies were polished with Oxford 

Nanopore Medaka 1.6.1 and parameters "-m r941_min_fast_g303" (12, 13). Binning of 

assembled metagenomes into metagenomic bins was performed with MaxBin 2.2.7 

(14) and MetaBAT 2.15 (13). Bins were unified using DASTool 1.1.5 (15). Resulting bins 

were post-processed to improve retainment of AMR marker genes from high quality 

unbinned contigs, as previously described (7). Genome assembly was assessed using 

checkm2 (16), which uses lineage specific sets of marker genes to estimate completeness 

and contamination of microbial genomes. Taxonomic profiles were visualized using 

Krona plots (https://fordegenomics.github.io/direct). Completeness and duplication of 

bins was assessed with BUSCO (17) and QUAST (18). For each sample, no more than one 

resulting bin had genome quality metrics compatible with downstream AST prediction. 

Downstream analysis was, thus, performed on genome assemblies to reduce loss of 

AMR information in the binning process. Genome assemblies were uploaded to the 

AREScloud web application, release 2022–10 (Ares Genetics GmbH, Vienna, AT) for 

genomic prediction of antimicrobial susceptibility. The platform used stacked classifica-

tion machine learning (ML) predictive AST models trained on ARESdb (19), combined 

with rule-based resistance prediction via ResFinder 4 (20) to provide species-specific 

susceptibility/resistance (S/R) predictions. If no high-quality ML models were available 

in AREScloud for certain taxa, non-specific ResFinder 4 calls based only on generalized 

presence of antibiotic resistance genes were used but were flagged as being lower 

confidence predictions. In addition, we compared resistance gene profiling derived from 

ONT sequencing from BC broths to pure cultured isolates sequenced using Illumina as 

a reference. Where paired sequence data from both samples were available, in silico 

resistance gene profiles were determined by screening the draft assembled genomes 

against the NCBI resistance gene database using AMRFinderPlus (version 3.10.24) (21) 

with default parameters (90% sequence identity and 90% sequence coverage) and 

compared for concordance in the presence/absence of AMR genes across the sample 

types.
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AST predictions for a total of 25 antibiotic compounds were generated, where 

appropriate and relevant for that species. True negatives (TN) were defined as data 

points where both the reference method (phenotypic AST) and the test method 

(AREScloud) returned a susceptible result; true positives (TP) where both methods 

returned a resistant result; false positives (FP) where the reference method returned 

a susceptible and the tested method returned a resistant result; false negatives (FN), 

where the reference method returned a resistant and the tested method returned a 

susceptible result. Very major error (VME) and major error (ME) rates were defined 

following CLSI M52 guidelines (22) as the fraction of cases identified as resistant by the 

reference method which were identified as susceptible by the tested method [FN/(FN + 

TP)], and the fraction of cases identified as susceptible by the reference method which 

were identified as resistant by the tested method [FP/(FP + TN)], respectively. Categorical 

agreement (CA) between results of WGS-AST and conventional AST were calculated [CA 

= (TN + TP)/(TN + FP + FN + TP)] for antimicrobial-organism combinations.

Conventional species identification and AST

All genomics-based species identification and AST results were compared to conven

tional phenotypic methods validated for clinical use at Pathology Queensland. Species 

identification was performed using MALDI-TOF (Vitek MS, bioMérieux) on pure cultured 

isolates, with AST performed by Vitek 2 automated broth microdilution (N-246 AST 

cards; bioMérieux), using EUCAST clinical breakpoints applicable at the time (23). For 

certain species (e.g., Streptococcus pyogenes), AST was undertaken using disk diffusion 

according to EUCAST methods (24), or by Etest (bioMérieux) where appropriate (e.g., 

penicillin for Streptococcus pneumoniae). For some species where EUCAST breakpoints 

were not available (e.g., Aeromonas spp.), CLSI breakpoints were applied. Conventional 

phenotypic testing reported for clinical use by the diagnostic laboratory was considered 

the reference standard against which genomic results were compared.

RESULTS

Blood culture microorganisms

A total of 66 positive blood culture samples, from 201 enrolled patients, demonstrated 

bacterial growth, from which 52 were included for further sequencing analysis, with 

exclusions reflecting non-bacterial growth (e.g., Candida sp.), missing samples or likely 

contaminants (e.g., mixed coagulase-negative staphylococci) that were not worked up 

further by the clinical laboratory (Fig. 2; Table S1). Samples included 27 gram-positive 

and 23 gram-negative bacterial species, with 2 samples showing polymicrobial growth 

(Table 2).

Taxonomy identification from sequenced samples and in silico predictive AST

Samples were run either on a single flow cell or multiplexed with up to 12 samples 

per flow cell, with a median sequencing yield per flow cell of 2.5 Gbp for multiplexed 

samples and 1.5 Gbp for single samples. Taxonomic identification of sequenced samples 

yielded excellent agreement to species level compared to conventional methods (49/52, 

94.2%); for monomicrobial samples agreement was 98% (49/50). In two samples, 

genus-level agreement was obtained when compared to Vitek MS, but sequencing 

provided a more accurate identification; the pipeline identified species belonging to 

Enterobacter cloacae complex (E. hormaechei for sample 9420-58 and E. asburiae for 

sample 9420-32) in two samples reported as E. cloacae by phenotypic methods. The 

correct species level identity resulting from sequencing of both samples was confirmed 

by Illumina-based sequencing of the cultured isolates. For one polymicrobial sample, the 

secondary pathogen (E. cloacae) reported by phenotypic methods was not apparent in 

the Kraken2 report of input reads, where only one of the cultured pathogens (E. coli) was 

identified. For another polymicrobial sample, the presence of Staphylococcus hominis was 

identified by phenotypic methods alongside Proteus mirabilis, but only ~15% of bacterial 
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reads in the sample could be matched to genus Staphylococcus and were insufficient 

for predictive AST. For one sample (9421-30), no identification was achieved due to 

inadequate input data; with only 145 very short reads (mean read length 191), thus no 

further processing was possible. Sequencing from an uninoculated blood culture broth 

revealed a very low number of reads (n = 28) mapping to bacterial genomes (e.g., E. coli), 

compared to a mean number of reads of 271411 mapping to bacterial taxa for positive 

culture broths included in the sequencing analysis.

A total of 470 phenotypic AST results with matched predictive AST calls were 

analyzed. As conventional AST was not routinely performed in all samples (e.g., 

likely contaminants, anaerobic organisms), predictive AST was only compared where 

phenotypic results were available. In addition, two polymicrobial samples were excluded. 

For an additional six samples, neither exploratory nor high quality AST predictions, 

were available (four samples had insufficient reads for assembly and in two samples, 

antibiotics reported by phenotypic methods, were not available in the AREScloud 

FIG 2 Flow diagram for sample inclusion. BC, blood culture; AST, antimicrobial susceptibility testing; QC, quality control.
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database). As such, a total of 42 samples had both predictive AST and phenotypic AST 

calls compared, and for 24 samples, high-quality AREScloud predictions were available.

Overall CA was 89.3% for 262 AST results across 24 samples for which qual

ity sequencing-based AST predictions were available, including seven common 

BSI organisms (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Kleb

siella aerogenes, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas 

aeruginosa), but with 12.1% VMEs (mainly seen in E. coli with tobramycin and trimetho

prim-sulfamethoxazole, driven by a single E. coli sample with poor assembly metrics) 

and 10.5% MEs (mainly seen in P. aeruginosa against cefepime, ciprofloxacin, gentami

cin, and meropenem; K. aerogenes against ceftazidime and ceftriaxone; E. coli against 

amikacin, cephazolin, ampicillin, and cefoxitin; and K. pneumoniae against cephazolin 

and ciprofloxacin) (Tables 3 and 4; Table S2).

For all 470 AST predictions across 42 samples, including both high-quality and 

exploratory-only results, CA was 87.7%, with 28.4% VME, and 8.3% MEs (Table 5). 

VMEs were mainly seen with one isolate of Aeromonas sp. (100%; false susceptibility 

for amoxicillin-clavulanate, meropenem, and trimethoprim), Pseudomonas aeruginosa 

(100%; false susceptibility for ticarcillin-clavulanate), E. coli (31.6%; false susceptibility 

for tobramycin, trimethoprim-sulfamethoxazole, and ticarcillin-clavulanate), Ochrobac

trum anthropi (33.3%; false susceptibility for ceftriaxone), Staphylococcus haemolyticus 

(50%; false susceptibility for cephalothin, ciprofloxacin, rifampicin, tetracycline), and 

Staphylococcus epidermidis (20%; false susceptibility for cephalothin, ciprofloxacin, and 

teicoplanin). MEs were seen in Pseudomonas aeruginosa (45.5%; false resistance for 

cefepime, ceftazidime, ciprofloxacin, meropenem) and Klebsiella pneumoniae (11.1%, 

false resistance for cephazolin, cefoxitin, and ciprofloxacin) (Table S2). Not all of 

the tested compounds achieved satisfactory performance even when high-quality 

TABLE 2 Species identification by conventional methods

Species N

Gram-positive (N = 27)

  Staphylococcus aureus 10

  Staphylococcus epidermidis 7

  Streptococcus pneumoniae 2

  Streptococcus pyogenes 1

  Group C Streptococcus 1

  Staphylococcus capitis 1

  Staphylococcus lugdunensis 1

  Staphylococcus haemolyticus 1

  Enterococcus faecalis 1

  Clostridium perfringens 1

  Eggerthella lenta 1

Gram-negative (N = 23)

  Escherichia coli 7

  Enterobacter cloacae complex 4

  Klebsiella (Enterobacter) aerogenes 1

  Pseudomonas aeruginosa 3

  Klebsiella pneumoniae 3

  Haemophilus influenzae 1

  Stenotrophomonas maltophilia 1

  Aeromonas sp. 1

  Prevotella intermedia 1

  Ochrobactrum anthropi 1

Polymicrobial (N = 2)

  Escherichia coli + Enterobacter cloacae 1

  Proteus mirabilis + Staphylococcus hominis 1

Total 52
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predictions were achieved, with CA ranging from >95% (for amoxicillin-clavulanate, 

gentamicin, erythromycin, fusidic acid, ticarcillin-clavulanate, and vancomycin) to as 

low as 55.6% for cephazolin, with high rates of VMEs for trimethoprim-sulfamethoxa

zole (66.7%), trimethoprim (25%), and tobramycin (100%) (Table 6). The only agents 

that would pass acceptance criteria (>95% CA, <3% ME, and <1.5% VME) even when 

only using high-quality predictions would be amoxicillin-clavulanate, erythromycin, and 

fusidic acid. While vancomycin and ticarcillin-clavulanate had 100% CA and no MEs, the 

lack of resistant isolates precluded calculation of the rate of VMEs.

Detection of AMR genes from ONT-generated assemblies of bacterial genomes from 

BC broths showed some discrepancies compared to Illumina-based sequencing of pure 

cultured isolates (Fig. 3) although several of these reflected more specific allele calls from 

sequencing pure isolates (e.g., blaCTX-M from sequencing of BC sample, but blaCTX-M-15 

from pure cultured isolate). Illumina-based sequencing of pure isolates detected a 

median of 3 additional AMR gene targets (range −1 to 14; IQR 1–5). In only a single 

sample did ONT detect one more AMR gene target than Illumina.

In terms of potential turn-around times for direct ONT sequencing from blood 

cultures, pre-sequencing steps took ~4 h, including (a) host DNA reduction, ~2 h; (b) 

DNA extraction, ~30 min; (c) DNA amplification, ~1 h; and (d) DNA Library prep, ~30 

min. Adequate data for downstream processing would usually be achieved within ~4 h, 

but flow cells were run up to 12 h for single samples and 72 h for multiplexed samples 

although sequencing beyond 12 h provided limited additional data. The predictive AST 

calls from AREScloud were available within ~1 h. As such, the potential turn-around time 

from flagging of a positive blood culture to report generation could be achieved within 

9–17 h, potentially faster than conventional AST methods and Illumina-based methods 

(up to 48 h, or longer).

DISCUSSION

We describe a ONT-based sequencing approach using positive blood culture broth 

for pathogen detection and taxonomic classification. In monomicrobial infections, 

the performance is encouraging, with 100% agreement to genus level. Polymicrobial 

samples remain challenging, with only one of two pathogens identified in samples 

encountered in this study. In one polymicrobial sample, identification of Staphylococcus 

hominis only to genus level of Staphylococcus could be problematic clinically if prompt

ing clinicians to treat for the more pathogenic Staphylococcus aureus. In two samples 

with species belonging to the E. cloacae complex, sequencing-based identification was 

more accurate than conventional methods, although discrimination by MALDI-TOF of 

these species is known to be problematic, without additional analysis (25, 26). Sequenc

ing directly from blood samples to detect pathogenic bacteria in patients with sepsis 

and bloodstream infection is limited by low loads of bacterial DNA in blood at the time 

of presentation, high concentrations of human DNA, and challenges in discriminating 

background low-level contaminating DNA (27, 28). Adding a culture-amplification step 

TABLE 3 Performance of predictive AST by species compared to Vitek 2, for samples with high quality 
predictionsa

Species N Categorical 

agreement (%)

Major error (%) Very major 

error (%)

Staphylococcus aureus 9 97.2 3.2 −

Escherichia coli 6 87.8 9.2 23.5

Klebsiella pneumoniae 3 93.8 6.5 0

Pseudomonas aeruginosa 3 52.4 47.6 −

Enterococcus faecalis 1 100 0 −

Klebsiella aerogenes 1 83.3 20 0

Streptococcus pneumoniae 1 66.7 33.3 −

Overall 24 89.3 10.5 12.1

aNote: blank cells reflect no data for calculations (e.g., no resistance seen in that species by reference method).
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TABLE 4 Performance of predictive AST compared to Vitek 2, by species and compound, where 
high-quality predictions were availablea

Species Compound CA (%) ME (%) VME (%)

Enterococcus faecalis Gentamicin 100 0 −

Erythromycin 100 − 0

Linezolid 100 0 −

Teicoplanin 100 0 −

Vancomycin 100 0 −

Escherichia coli Amikacin 83.3 16.7 −

Amoxicillin + clavulanic acid 100 0 −

Ampicillin 83.3 33.3 0

Cefazolin 40 75 0

Cefepime 100 0 0

Cefoxitin 83.3 16.7 −

Ceftazidime 100 0 0

Ceftriaxone 100 0 0

Ciprofloxacin 100 0 0

Gentamicin 100 0 0

Meropenem 100 0 −

Sulfamethoxazole + 

trimethoprim

60 0 66.7

Tobramycin 83.3 0 100

Trimethoprim 83.3 0 25

Klebsiella (Enterobacter) 

aerogenes

Amikacin 100 0 −

Amoxicillin + clavulanic acid 100 − 0

Cefazolin 100 − 0

Ceftazidime 0 100 −

Ceftriaxone 0 100 −

Ciprofloxacin 100 0 −

Gentamicin 100 0 −

Meropenem 100 0 −

Sulfamethoxazole + 

trimethoprim

100 0 −

Ticarcillin + clavulanic acid 100 0 −

Tobramycin 100 0 −

Trimethoprim 100 0 −

Klebsiella pneumoniae Amikacin 100 0 −

Amoxicillin + clavulanic acid 100 0 0

Cefazolin 66.7 33.3 −

Ceftazidime 100 0 −

Ceftriaxone 100 0 −

Ciprofloxacin 50 50 −

Gentamicin 100 0 −

Meropenem 100 0 −

Sulfamethoxazole + 

trimethoprim

100 0 −

Ticarcillin + clavulanic acid 100 0 −

Tobramycin 100 0 −

Trimethoprim 100 0 −

Pseudomonas aeruginosa Amikacin 100 0 −

Cefepime 33.3 66.7 −

Ceftazidime 0 100 −

Ciprofloxacin 33.3 66.7 −

Gentamicin 66.7 33.3 −

(Continued on next page)
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by sequencing from positive blood culture broths, as described in this study, increases 

the amount of bacteria DNA available for sequencing.

A key aspiration in the application of genomics-based diagnostics direct from clinical 

samples would be the ability to accurately predict antimicrobial susceptibility, inde

pendently of conventional culture-based methods. However, the presence or absence 

of resistance genes does not always predict the phenotype, which may be modified 

by gene expression, gene copy number, and other post-translational effects (29). The 

machine-learning algorithm used in this study is based on a large sample bank with 

TABLE 4 Performance of predictive AST compared to Vitek 2, by species and compound, where 
high-quality predictions were availablea (Continued)

Species Compound CA (%) ME (%) VME (%)

Meropenem 33.3 66.7 −

Tobramycin 100 0 −

Staphylococcus aureus Benzylpenicillin 100 0 0

Ciprofloxacin 100 0 −

Clindamycin 88.9 14.3 0

Erythromycin 100 0 0

Fusidic acid 100 0 −

Gentamicin 100 0 −

Linezolid 100 0 −

Mupirocin 88.9 11.1 −

Rifampicin 88.9 11.1 −

Teicoplanin 100 0 −

Tetracycline 100 0 −

Vancomycin 100 0 −

Streptococcus pneumoniae Benzylpenicillin 0 100 −

Erythromycin 100 0 −

Vancomycin 100 0 −

Overall All agents 89.3 10.5 12.1

aNote: blank cells reflect no data for calculations (e.g., no susceptibility/resistance seen in that species by reference 
method).

TABLE 5 Performance of predictive AST by species compared to Vitek 2, for all samples including those 
with both high confidence and exploratory-only predictionsa

Species N Categorical 

agreement (%)

Major error (%) Very major error 

(%)

Staphylococcus aureus 9 96.6 2.9 7.7

Staphylococcus epidermidis 7 85.5 7.1 35

Escherichia coli 6 86.5 8.7 30

Enterobacter cloacae 3 92.3 7.4 8.3

Klebsiella pneumoniae 3 90 11.1 0

Pseudomonas aeruginosa 3 50 45.5 100

Aeromonas sp. 1 70 0 100

Enterococcus faecalis 1 100 0 0

Haemophilus influenzae 1 100 0 −

Klebsiella aerogenes 1 93.3 9.1 0

Ochrobactrum anthropi 1 87.5 0 33.3

Staphylococcus capitis 1 83.3 0 50

Staphylococcus haemolyticus 1 67.7 0 57.1

Staphylococcus lugdunensis 1 100 0 0

Streptococcus pneumoniae 1 75 25 −

Streptococcus pyogenes 1 100 0 0

Streptococcus dysgalactiae 1 100 0 −

Overall 42 87.7 8.3 28.4

aNote: blank cells reflect no data for calculations (e.g., no resistance seen in that species by reference method).

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.03065-2310

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/s

p
ec

tr
u
m

 o
n
 1

8
 J

an
u
ar

y
 2

0
2
4
 b

y
 1

3
0
.6

0
.5

8
.2

.

https://doi.org/10.1128/spectrum.03065-23


matched whole-genome sequenced clinical isolates and AST results collected from 

several international centres (19). Such an approach has advantages in that the algorithm 

does not require a clear understanding of the association between genotype and 

phenotype but will learn to use relevant genomic features if supplied with adequate 

amounts of data.

The use of direct sequencing and predictive AST from positive blood culture broths 

holds some promise, and ONT long-read sequencing using MinION offers potential time 

advantages over Illumina-based approaches. Accuracy of pathogen identification was 

similar to results previously achieved with Illumina (95% species-level agreement) (5). 

However, using ONT sequencing chemistries, flow cells, and base-callers available at 

the time of study, AST predictions based on ONT data were considerably less accurate 

than Illumina-based methods, where we have previously demonstrated CA of >95% for 

common gram-negative pathogens against 17 antimicrobials (with an overall 11% VME 

rate) (5). A number of factors are likely to account for performance limitations seen 

with ONT-based predictive AST in this study, including inadequate genome coverage, 

database limitations, a relatively small sample size including a limited range of species 

and resistance phenotypes, loss of plasmids and the use of older flow-cells and kit 

chemistries available at the time. ONT sequencing in some samples resulted in significant 

fragmentation and incompleteness of assembled genomes, caused by an insufficient 

number of reads and low average read length in a subset of data (sequencing metrics 

in Table S1), as well as lower depth of sequencing compared with Illumina. In addi

tion, reads overall exhibited low per-base accuracy (average Phred score of 10.48, i.e., 

approximately 90% accuracy), likely due to base-calling with the “fast” profile and the 

use of an older versions of the Guppy base-caller (v5.0.16; and v3.2.9 used in earlier 

sequencing runs). Additional work is needed to assess the performance of current ONT 

consumables (e.g., R10.4.1 flow cells and kit 14 chemistry), which are reported to achieve 

very high sequencing accuracies (30), and more current base-calling software. More 

stringent quality thresholds to define adequate genome assemblies may also improve 

TABLE 6 Performance of predictive AST compared to Vitek 2 for all compounds, where high-quality 
predictions were availablea

Compound CA (%) ME (%) VME (%)

Amikacin 92.3 7.7 −

Amoxicillin + clavulanic acid 100 0 0

Ampicillin 83.3 33.3 0

Benzylpenicillin 90 50 0

Cefazolin 55.6 57.1 0

Cefepime 77.8 25 0

Cefoxitin 83.3 16.7 −

Ceftazidime 69.2 33.3 0

Ceftriaxone 88.9 12.5 0

Ciprofloxacin 85.7 15 0

Clindamycin 88.9 14.3 0

Erythromycin 100 0 0

Fusidic acid 100 0 −

Gentamicin 95.5 4.8 0

Linezolid 100 0 −

Meropenem 83.3 16.7 −

Sulfamethoxazole + trimethoprim 77.8 0 66.7

Ticarcillin + clavulanic acid 100 0 −

Tobramycin 92.3 0 100

Trimethoprim 90 0 25

Vancomycin 100 0 −

Overall 89.3 10.5 12.1

aNote: blank cells reflect no data for calculations (e.g., no resistance seen in that species by reference method).
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performance. The high rates of MEs/VMEs encountered in common species in this study, 

would currently preclude application for clinical use. CLSI M52 guidelines recommend 

that new AST systems demonstrate CA ≥ 90% and rates of MEs and VMEs < 3% (22), 

although given the high risk of VMEs to patient care, the FDA stipulates VME rates 

to be <1.5% (31). However, it should be noted that some of these errors occurred 

in less critical or uncommonly prescribed species/antibiotic combinations (e.g., E. coli 

and tobramycin). It could be hypothesized that errors may be mitigated by database 

enhancement and training of the algorithms on a larger number and broader range of 

organisms, but this requires further study. The application of sequencing from blood 

cultures may also allow faster identification of slow-growing or fastidious organisms. One 

potential approach to reduce time to reporting might be the early sampling of blood 

culture broths, before they flag positive on automated detections systems. In this way, 

there may be adequate pathogen load to undertake sequencing, while reducing the 

overall turn-around time. However, the relatively low proportion of blood cultures that 

return bacterial growth may require testing of all inoculated samples, limiting practical 

application and cost-effectiveness. The cost of ONT sequencing from positive blood 

cultures is dependent on a number of variables, such as whether single or multiplexed 

samples are run, whether samples are batched (which reduces costs but may prolong 

turn-around times) or run “on-demand” or whether flow cells are reused. However, using 

the extraction methods, library preparation, and sequencing protocols described in this 

study, and if 10 samples are multiplexed per flow cell, cost estimates range from US$45–

65 per sample. One further advantage of ONT long-read sequencing is the ability to 

sequence plasmid genomes and place AMR genes into context with associated mobile 

genetic elements. While we did not systematically examine plasmid content in this study, 

we have previously shown that the DNA extraction methods we used can preserve 

plasmid structures for ONT sequencing (5).

FIG 3 Heat map comparing antimicrobial resistance genes detected from ONT-generated sequences from blood culture broth extracts, compared to Illumina-

generated sequences of pure cultured isolates from the same sample. Vertical axis: Sample ID label suffix “PC” = pure culture isolate (sequenced by Illumina); 

suffix “BC” = blood culture broth (sequenced by ONT).
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While there are several rapid molecular diagnostic assays available for species 

identification and AMR gene detection in clinical use (e.g., BCID2, ePlex, VERIGENE, 

T2MR, etc.), these usually have relatively limited number of species/AMR gene targets on 

the panel. A key advantage of a sequencing-based approach is not only the ability to 

potentially detect any bacterial species in the sample but also to provide an AST output 

familiar to treating clinicians, i.e., a predictive phenotype of multiple antibiotics to select 

appropriate therapy, maximizing clinical utility.

Limitations to this study are acknowledged. While samples included in the study 

were prospectively collected, and included most common species causing sepsis, a 

more extensive range of pathogens, including diverse AMR phenotypes, would need 

to be assessed to understand the reliability, broader applicability, and clinical utility 

of this approach. Furthermore, our collection included few samples with resistance to 

some agents, inflating VME rate in some species/antibiotic combinations. For example, 

there were only two Pseudomonas aeruginosa isolates with resistance to any antimicro

bial tested; with resistance to ticarcillin-clavulanate that were both falsely reported as 

susceptible by predictive AST, leading to a 100% VME rate (albeit only from low-quality 

exploratory predictions). The absence of any resistances in the Pseudomonas samples 

to other agents precluded the ability to calculate any VMEs for other antibiotics using 

high-quality predictions. It is also acknowledged that Vitek 2 AST is not a reference 

method for MIC determination (such as broth microdilution or agar dilution) and is an 

imperfect standard for comparison despite being commonly used in clinical diagnostic 

laboratories. Additionally, improvements in ONT flow cell technology have occurred 

since this study was performed, including the possibility of adaptive sequencing that can 

actively exclude human DNA during the sequencing process (32), which may also further 

improve the application of these methods.

Conclusions

Direct sequencing from positive blood culture broths in patients with sepsis is feasible 

and can provide accurate species-level identification of causative pathogens, especially 

in monomicrobial infections. Predictive AST shows promise for some bacterial species 

and antibiotic combinations but is sub-optimal for a number of common pathogens with 

unacceptably high VME rates driven by less reliable calls for certain species and drug 

combinations. Diagnostic performance characteristics were improved by only accept

ing results where high-quality predictions were available, compared to all predictions 

regardless of quality (CA 89.3% vs 87.7%), most notably in reduced rates of VMEs (12.1% 

vs 28.4%). ONT-based approaches may be faster and provide data in real time, but 

improvements in accuracy across a broader range of organisms are required before it 

can be considered for clinical use. Improved performance should be achievable with 

training of ML algorithms on larger and more diverse data sets, and masking of results 

where poor performance of certain species and drug combinations are recognized. 

Furthermore, ongoing developments in the accuracy of rapid sequencing technologies 

should lead to improved performance of these methods for eventual diagnostic use. 

The prospect of rapid whole-genome sequencing from culture-amplified clinical samples 

holds promise and could bring us closer to clinical application for the management of 

patients with sepsis and bloodstream infection.
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