59 research outputs found
Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
This work was supported by Marie Curie Postdoctoral Fellowships to T.A.W., E. H. and S. L., a European Research Council Advanced Investigator Grant (ERC-2010-AdG-268701) to T.M.E., and a Wellcome Trust Programme Grant (number 045404) to T.M.E. and J.M.L. R.L. acknowledges generous financial support from Deutsche Forschungsgemeinschaft (SFB 593, SFB 987, GRK 1216, LI 415/5), LOEWE program of state Hessen, Max-Planck Gesellschaft, von Behring-Röntgen StiftungMicrosporidians are a diverse group of obligate intracellular parasites that have minimized their genome content and simplified their sub-cellular structures by reductive evolution. Functional studies are limited because we lack reliable genetic tools for their manipulation. Here, we demonstrate that the cristae-deficient mitochondrion (mitosome) of the microsporidian Trachipleistophora hominis is the functional site of iron-sulphur cluster (ISC) assembly, which we suggest is the essential task of this organelle. Cell fractionation, fluorescence imaging and fine-scale immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified recombinant mitosomal ISC proteins. Reconstitution proceeded as rapidly and efficiently as observed for yeast or fungal mitochondrial ISC components. Core components of the T. hominis cytosolic iron-sulphur protein assembly (CIA) pathway were also identified including the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that both the ISC and CIA biosynthetic pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of the Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides additional compelling evidence for the ancient chimeric ancestry of eukaryotes.Publisher PDFPeer reviewe
DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly
DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease
The Minimal Proteome in the Reduced Mitochondrion of the Parasitic Protist Giardia intestinalis
The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis
Shifting the Paradigm: The Putative Mitochondrial Protein ABCB6 Resides in the Lysosomes of Cells and in the Plasma Membrane of Erythrocytes
ABCB6, a member of the adenosine triphosphate–binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells. Knock-down studies demonstrate that ABCB6 function is not required for de novo heme biosynthesis in differentiating K562 cells, excluding this ABC transporter as a key regulator of porphyrin synthesis. We confirm the mitochondrial localization of ABCB7, ABCB8 and ABCB10, suggesting that only three ABC transporters should be classified as mitochondrial proteins. Taken together, our results challenge the current paradigm linking the expression and function of ABCB6 to mitochondria
Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system
Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system
Contains fulltext :
154334.pdf (publisher's version ) (Open Access)BACKGROUND: Transcriptional control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study we performed RNA sequencing of two control and two complex I-deficient patient cell lines cultured in the presence of compounds that perturb mitochondrial metabolism: chloramphenicol, AICAR, or resveratrol. We combined this with a comprehensive analysis of mitochondrial and nuclear gene expression patterns, co-expression calculations and transcription factor binding sites. RESULTS: Our analyses show that subsets of mitochondrial OXPHOS genes respond opposingly to chloramphenicol and AICAR, whereas the response of nuclear OXPHOS genes is less consistent between cell lines and treatments. Across all samples nuclear OXPHOS genes have a significantly higher co-expression with each other than with other genes, including those encoding mitochondrial proteins. We found no evidence for complex-specific mRNA expression regulation: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of nuclear genes for OXPHOS subunits versus assembly factors, suggesting divergent transcription programs. Furthermore, complex I co-expression calculations identified 684 genes with a likely role in OXPHOS biogenesis and function. Analysis of evolutionarily conserved transcription factor binding sites in the promoters of these genes revealed almost all known OXPHOS regulators (including GABP, NRF1/2, SP1, YY1, E-box factors) and a set of novel candidates (ELK1, KLF7, SP4, EHF, ZNF143, and TEL2). CONCLUSIONS: OXPHOS genes share an expression program distinct from other genes encoding mitochondrial proteins, indicative of targeted nuclear regulation of a mitochondrial sub-process. Within the subset of OXPHOS genes we established a difference in expression between mitochondrial and nuclear genes, and between nuclear genes encoding subunits and assembly factors. Most transcription regulators of genes that co-express with complex I are well-established factors for OXPHOS biogenesis. For the remaining six factors we here suggest for the first time a link with transcription regulation in OXPHOS deficiency
Reaction of electric and meteorological states of the near-ground atmosphere during a geomagnetic storm on 5 April 2010
Neonatal lethality and recycling defect of transferrin receptor in mice with Syntaxin12/13 disruption
- …
