278 research outputs found

    Mutual Event Observations of Io's Sodium Corona

    Get PDF
    We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere

    Measurement of two-halo neutron transfer reaction p(11^{11}Li,9^{9}Li)t at 3AA MeV

    Get PDF
    The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time at an incident energy of 3AA MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differential cross sectionshave been determined for transitions to the \nuc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different \nuc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter

    Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA

    Full text link
    We report the first detection of interstellar mercapto radicals, obtained along the sight-line to the submillimeter continuum source W49N. We have used the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 - 3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant spectrum reveals SH absorption in material local to W49N, as well as in foreground gas, unassociated with W49N, that is located along the sight-line. For the foreground material at velocities in the range 37 - 44 km/s with respect to the local standard of rest, we infer a total SH column density ~ 2.6 E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio is much smaller than that predicted by standard models for the production of SH and H2S in turbulent dissipation regions and shocks, and suggests that the endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT special issue

    Magnetically Driven Warping, Precession and Resonances in Accretion Disks

    Get PDF
    The inner region of the accretion disk onto a rotating magnetized central star (neutron star, white dwarf or T Tauri star) is subjected to magnetic torques which induce warping and precession of the disk. The origin of these torques lies in the interaction between the (induced) surface current on the disk and the horizontal magnetic field (parallel to the disk) produced by the inclined magnetic dipole. Under quite general conditions, there exists a magnetic warping instability in which the magnetic torque drives the disk plane away from the equatorial plane of the star toward a state where the disk normal vector is perpendicular to the spin axis. Viscous stress tends to suppress the warping instability at large radii, but the magnetic torque always dominates as the disk approaches the magnetosphere boundary. The magnetic torque also drives the tilted inner disk into retrograde precession around the stellar spin axis. Moreover, resonant magnetic forcing on the disk can occur which may affect the dynamics of the disk. The magnetically driven warping instability and precession may be related to a number observational puzzles, including: (1) Spin evolution (torque reversal) of accreting X-ray pulsars; (2) Quasi-periodic oscillations in low-mass X-ray binaries; (3) Super-orbital periods in X-ray binaries; (4) Photometric period variations of T Tauri stars.Comment: 39 pages including 1 ps figure; Published version; ApJ, 524, 1030-1047 (1999

    A search for two body muon decay signals

    Get PDF
    Lepton family number violation is tested by searching for μ+e+X0\mu^+\to e^+X^0 decays among the 5.8×108\times 10^8 positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive X0X^0 bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic μ+e+X0\mu^+\to e^+X^0 decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order 10510^{-5} are obtained for bosons with masses of 13 - 80 MeV/c2^2 and with different decay asymmetries. For bosons with masses less than 13 MeV/c2^{2} the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to 5.8×1055.8 \times 10^{-5}. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.Comment: 7 pages, 5 figures, 2 tables, accepted by PR

    One Hundred Years of Observations of the Be Star HDE 245770 (the X-ray Binary A0535+26/V725 Tau): The End of an Active Phase

    Full text link
    UBV observations of the X-ray binary system A0535+26/V725 Tau at the Crimean Station of the Sternberg Astronomical Institute in 1980-1998 are presented. Based on our and published data, we analyze the photometric history of the star from 1898.Comment: Translated from Pis'ma Astronomicheskii Zhurnal, Vol. 26, No. 1, 2000, pp. 13-2

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Measurement of the Muon Decay Parameter delta

    Full text link
    The muon decay parameter delta has been measured by the TWIST collaboration. We find delta = 0.74964 +- 0.00066(stat.) +- 0.00112(syst.), consistent with the Standard Model value of 3/4. This result implies that the product Pmuxi of the muon polarization in pion decay, Pmu, and the muon decay parameter xi falls within the 90% confidence interval 0.9960 < Pmuxi < xi < 1.0040. It also has implications for left-right-symmetric and other extensions of the Standard Model.Comment: Extended to 5 pages. Referee's comments answere

    Peculiarities and variations in the optical spectrum of the post-AGB star V448Lac=IRAS22223+4327

    Full text link
    Repeated observations with high spectral resolution acquired in 1998-2008 are used to study the temporal behavior of the spectral line profiles and velocity field in the atmosphere and circumstellar envelope of the post-AGB star V448Lac. Asymmetry of the profiles of the strongest absorption lines with low-level excitation potentials less 1eV and time variations of these profiles have been detected, most prominently the profiles of the resonance lines of BaII, YII, LaII, SiII. The peculiarity of these profiles can be explained using a superposition of stellar absorption line and shell emission lines. Emission in the (0;1) 5635A Swan band of the C2 molecule has been detected in the spectrum of V448Lac for the first time. The core of the Halpha line displays radial velocity variations with an amplitude ~8 km/s. Radial velocity variations displayed by weakest metallic lines with lower amplitudes, 1-2 km/s, may be due to atmospheric pulsations. Differential line shifts, 0 -- 8 km/s, have been detected on various dates. The position of the molecular spectrum is stationary in time, indicating a constant expansion velocity of the circumstellar shell, Vexp=15.2 km/s, as derived from the C2 and NaI lines.Comment: 19 pages, 8 figures, 1 tabl
    corecore