14 research outputs found

    Neural stem cell therapy for cancer

    Get PDF
    Cancers of the brain remain one of the greatest medical challenges. Traditional surgery and chemoradiation therapy are unable to eradicate diffuse cancer cells and tumor recurrence is nearly inevitable. In contrast to traditional regenerative medicine applications, engineered neural stem cells (NSCs) are emerging as a promising new therapeutic strategy for cancer therapy. The tumor-homing properties allow NSCs to access both primary and invasive tumor foci, creating a novel delivery platform. NSCs engineered with a wide array of cytotoxic agents have been found to significantly reduce tumor volumes and markedly extend survival in preclinical models. With the recent launch of new clinical trials, the potential to successfully manage cancer in human patients with cytotoxic NSC therapy is moving closer to becoming a reality

    Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space

    Get PDF
    The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types

    Predictive factors and outcomes for ibrutinib in relapsed/refractory marginal zone lymphoma: a multicenter cohort study

    No full text
    Abstract Ibrutinib is effective in the treatment of relapsed/refractory (R/R) marginal zone lymphoma (MZL) with an overall response rate (ORR) of 48%. However, factors associated with response (or lack thereof) to ibrutinib in R/R MZL in clinical practice are largely unknown. To answer this question, we performed a multicenter (25 US centers) cohort study and divided the study population into three groups: “ibrutinib responders”—patients who achieved complete or partial response (CR/PR) to ibrutinib; “stable disease (SD)”; and “primary progressors (PP)”—patients with progression of disease as their best response to ibrutinib. One hundred and nineteen patients met the eligibility criteria with 58%/17% ORR/CR, 29% with SD, and 13% with PP. The median PFS and OS were 29 and 71.4 months, respectively, with no difference in PFS or OS based on the ibrutinib line of therapy or type of therapy before ibrutinib. Patients with complex cytogenetics had an inferior PFS (HR = 3.08, 95% CI 1.23–7.67, p = 0.02), while those with both complex cytogenetics (HR = 3.00, 95% CI 1.03–8.68, p = 0.04) and PP (HR = 13.94, 95% CI 5.17–37.62, p < 0.001) had inferior OS. Only primary refractory disease to first-line therapy predicted a higher probability of PP to ibrutinib (RR = 3.77, 95% CI 1.15–12.33, p = 0.03). In this largest study to date evaluating outcomes of R/R MZL treated with ibrutinib, we show that patients with primary refractory disease and those with PP on ibrutinib are very high-risk subsets and need to be prioritized for experimental therapies

    Predictive Factors and Outcomes for Ibrutinib in Relapsed/refractory Marginal Zone Lymphoma: A multicenter Cohort Study

    Get PDF
    Ibrutinib is effective in the treatment of relapsed/refractory (R/R) marginal zone lymphoma (MZL) with an overall response rate (ORR) of 48%. However, factors associated with response (or lack thereof) to ibrutinib in R/R MZL in clinical practice are largely unknown. To answer this question, we performed a multicenter (25 US centers) cohort study and divided the study population into three groups: ibrutinib responders -patients who achieved complete or partial response (CR/PR) to ibrutinib; stable disease (SD) ; and primary progressors (PP) -patients with progression of disease as their best response to ibrutinib. One hundred and nineteen patients met the eligibility criteria with 58%/17% ORR/CR, 29% with SD, and 13% with PP. The median PFS and OS were 29 and 71.4 months, respectively, with no difference in PFS or OS based on the ibrutinib line of therapy or type of therapy before ibrutinib. Patients with complex cytogenetics had an inferior PFS (HR = 3.08, 95% CI 1.23-7.67, p = 0.02), while those with both complex cytogenetics (HR = 3.00, 95% CI 1.03-8.68, p = 0.04) and PP (HR = 13.94, 95% CI 5.17-37.62, p \u3c 0.001) had inferior OS. Only primary refractory disease to first-line therapy predicted a higher probability of PP to ibrutinib (RR = 3.77, 95% CI 1.15-12.33, p = 0.03). In this largest study to date evaluating outcomes of R/R MZL treated with ibrutinib, we show that patients with primary refractory disease and those with PP on ibrutinib are very high-risk subsets and need to be prioritized for experimental therapies
    corecore