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Abstract

Cancers of the brain remain one of the greatest medical challenges. Traditional surgery and 

chemoradiation therapy are unable to eradicate diffuse cancer cells and tumor recurrence is nearly 

inevitable. In contrast to traditional regenerative medicine applications, engineered neural stem 

cells (NSCs) are emerging as a promising new therapeutic strategy for cancer therapy. The tumor-

homing properties allow NSCs to access both primary and invasive tumor foci, creating a novel 

delivery platform. NSCs engineered with a wide array of cytotoxic agents have been found to 

significantly reduce tumor volumes and markedly extend survival in preclinical models. With the 

recent launch of new clinical trials, the potential to successfully manage cancer in human patients 

with cytotoxic NSC therapy is moving closer to becoming a reality.
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1. Introduction

Over the past two decades, the dogma in the central nervous system has shifted from one of 

a static organ incapable of change to the current understanding of adult neurogenesis [1]. 

The key to much of this change was the discovery of neural stem cells (NSCs). NSCs are 

generated by the differentiation of embryonic tissue and can serve as a source for 

replenishing neurons and glial cells in the adult brain throughout life. NSCs are defined by 

the expression of classic markers, including Nestin and Sox2, as well as their expansion in 

growth factor rich media that contains fibroblast growth factor and epidermal growth factor. 

NSCs display the hallmarks of stem cells, both self-renewing as well as differentiating into 

neurons, astrocytes, and oligodendrocytes. This differentiation capacity has led to significant 

investigation into the use of NSCs for regenerative medicine applications to correct damage 
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to the brain and central nervous system caused by physical trauma or disease states. These 

studies have shown that NSC transplants survive in the diseased or damaged brain, and have 

therapeutic benefits in certain disease models.

In contrast to these traditional NSC therapies, the use of NSCs as tumor-homing drug 

carriers is an emerging area of interest that holds promise for treating malignant brain cancer 

[2–5]. Pioneering studies by Aboody et al. and Benedetti et al. first revealed the unique 

ability of NSCs to home to brain cancer [6,7]. These studies showed that NSCs transplanted 

at different sites throughout the brain migrated through the non-diseased parenchyma to 

localize selectively with cancer foci. When the NSCs were engineered with anticancer gene 

products, cytotoxic NSC therapy significantly inhibited the progression of cancer xenografts. 

These studies opened the door to the possibility of harnessing drug-loaded NSCs as a 

tumorhoming therapy. Ensuing studies over the past 15 years have further developed this 

concept, exploring novel cytotoxic agents, different routes of administration, and numerous 

molecular assays to define the mechanisms of migration. This exciting work has rapidly 

moved cytotoxic NSC therapy from preclinical mouse studies to a recent first-in-human 

clinical trial.

2. Glioblastoma

Glioblastoma (GBM) is the most common primary brain tumor, yet effectively treating this 

aggressive form of cancer remains a daunting challenge. GBM is classified as a grade IV 

glioma by the World Health Organization [8,9]. The current clinical standard of care for 

GBM is surgical resection followed by chemo- and radiation therapy. Yet, median survival 

for GBM remains only 12–15 months and only 5% of patients survive 5 years [10–12]. 

GBM survival has not significantly improved in several decades despite the advent of 

numerous therapeutic agents. This is due in large part to the aggressive and infiltrative nature 

of the cancer, as well as the heterogeneity of the disease. GBM is a highly infiltrative cancer, 

and surgical resection is unable to remove all of the invasive GBM foci. Chemotherapeutic 

regimens are complicated by the blood-brain barrier (BBB) that prevents more than 98% of 

all drugs from accessing the brain [13]. Those agents capable of crossing the BBB are 

typically unable to accumulate at therapeutically relevant concentrations.

As a result of these therapeutic challenges, numerous studies have explored new strategies to 

improve drug delivery to GBM. One of the earliest examples is the development of the 

Gliadel wafer. Gliadel is a biodegradable wafer consisting of a biocompatible polymer 

impregnated with the anti-cancer drug carmustine [14,15]. Gliadel was approved for use as 

an adjunct to surgery in 1997. Yet, Gliadel is often only minimally effective, particularly 

because the passively diffused drug is unable to reach distant invasive foci [16]. 

Additionally, Gliadel can cause numerous adverse side effects, ranging from impaired 

neurosurgical wound healing to seizures. More recently, the vascular endothelial growth 

factor (VEGF) inhibitor Bevacizumab has entered clinical use in GBM patients [17]. Blood 

vessels are essential for the growth of tumors, and inhibition of VEGF-mediated vessel 

formation could impair tumor progression. Studies have shown that Bevacizumab treatment 

leads to significant radiographic responses. However, these responses were only temporary 

and the ability of Bevacizumab to prolong overall survival of GBM patients remains in 
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question [18]. New therapies capable of seeking out delivering cytotoxic agents to both the 

primary and infiltrative tumor foci are needed to improve therapy for GBM. Engineered 

cytotoxic NSCs are one of the most promising strategies for GBM therapy.

3. Sources of NSCs

3.1. Endogenous NSCs

NSCs possess the capacity to both self-replicate as well as differentiate into the primary cell 

types found in the CNS: neurons, astrocytes, and oligodendrocytes. While NSCs are 

ubiquitous in the developing brain, small populations of dormant NSCs that respond to 

injury can also be harvested from the subventricular zone (SVZ) or the subgranular zone 

(SGZ) of the dentate gyrus (DG) in adults [1,19]. Isolation procedures vary yet typically 

involve microdissection and enzymatic digestion of tissue slices [20]. For the highest yield, 

cells taken from the SVZ or SGZ are cultured as neurospheres or monolayers, respectively, 

whereupon neural stemness is confirmed with Nestin, Sox2, or Msi1 markers [21,22]. 

Prolamin (CD133) can be used to distinguish NSCs from native astrocytes, but due to its 

expression on a range of stem cell types (including embryonic and cancerous) should be 

used in conjunction with other markers to identify neural-specific stem cell populations 

[23,24]. Stemness can be prolonged with the addition of fibroblast growth factor 2 (FGF2) 

and endothelial growth factor (EGF) in media, enabling thorough characterization of the 

cultured cells [25].

NSCs can be harvested from endogenous sources, expanded or established into stable lines 

in vitro, and subsequently transplanted to sites of injury for regenerative therapies with 

exciting clinical ramifications. One such example is partially-committed glial-restricted 

progenitors, which differentiate into oligodendrocytes and re-sheath demyelinated axons 

[26,27]. Cells isolated from non-neurogenic regions such as the spinal cord in adult mice 

[28] or the retina and cortex in humans [29] are also being advanced towards the clinic. The 

leader in the neural stem cell drug delivery field, however, has been the HB1 cell line 

established from human fetal donor CNS tissue at 8–18 weeks of gestation [30,31]. In 

addition to possessing proliferative and regenerative capacity, these cells have been found to 

natively exhibit tumor tropism, making them ideal drug delivery vehicles in cancer 

applications. The clonal population HB1.F3 has recently entered clinical trials in which they 

are being used to deliver chemotherapeutic payloads to recurrent GBM foci [32].

3.2. Induced pluripotent stem cells

In 2006, Takahashi and Yamanaka reported a ground-breaking discovery. By transducing 

mouse fibroblasts with Oct 3/4, Sox2, Klf4, and c-Myc, they were able to reprogram somatic 

cells into a pluripotent state where the cells had properties similar to embryonic stem cells 

[33]. The new cells were termed induced pluripotent stem cells (iPSCs). The discovery of 

iPSCs showed the fate of a cell could be changed. It also suggested a new approach to cell 

therapy where a large number of therapeutic cells could be created from a patient’s skin for 

autologous transplant. The iPSC strategy also eliminated ethical concerns and government 

restrictions surrounding the use of embryonic stem cells. This enormous promise has driven 

rapid progress in iPSC technology. Takahashi and Yu reported the generation of human 
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iPSCs simultaneously in 2007 [34,35]. Subsequently, iPSCs have been generated from a 

variety of different cell types, showing the majority of somatic cells can be reprogrammed to 

pluripotency. iPSCs were initially generated using integrating viral vectors, but this strategy 

risked insertional mutagenesis. New methods have now been reported that allow iPSC 

generation from non-integrating vectors, small molecule compounds, as well as RNA.

iPSCs can be converted into NSCs using strategies that mimic the conversion of embryonic 

stem cells into NSCs [36]. The resulting iPSC-derived NSC can be differentiated into 

oligodendrocytes, astrocytes, or neuronal cell types though culturing with specific factors 

including retinoic acid, fibroblast growth factor, or Wnts. An iPSC-based strategy to 

generate patient-specific NSCs could be a valuable clinical tool for future GBM therapies, 

but the field is still in its early stages. Lee et al. showed that iPSC-derived NSCs expressing 

thymidine kinase reduced the progression of intracranial U87 xenografts following injection 

of the ganciclovir (GCV) pro-drug [37]. Yamazoe et al. recently revealed that iPS-derived 

NSCs home to human and mouse GBM cells in culture, as well as syngeneic GL261 GBM 

xenografts in vivo [38]. These studies have begun to suggest that NSCs created by the 

conversion of iPSCs are tumor-homing drug carriers with potential to deliver anticancer 

agents to treat GBM.

3.3. Direct reprogramming

One of the newest areas in cell reprogramming is direct reprogramming. In this approach, 

somatic cells are directly converted into a distinct lineage without passing through a 

pluripotent intermediate. This is accomplished using lineage-specific reprogramming factors 

that are distinct from the Yamanaka factors that produce iPSCs. In contrast to iPSC 

technology, direct reprogramming was first reported in vivo followed by several in vitro 
studies. In this study, three transcription factors (Ngn3, Pdx1, and Mafa) were used to 

directly convert exocrine cells into endocrine cells within the pancreas of mice with the 

resulting cells exhibiting numerous properties of endogenous islet beta-cells [39]. In 2011, 

Marius Wernig and colleagues demonstrated that lineage-specific factors could be used to 

directly convert mouse and human fibroblasts into neuronal cells, referred to as iNs [40]. 

The field of direct reprogramming moved into NSCs with four studies published in 2012 

[41–44]. These studies showed that different gene cocktails could be used to convert mouse 

and human fibroblasts into multi-potent expandable NSCs, referred to as induced NSCs 

(iNSCs). The iNSC strategy provided advantages over iPSC generation in terms of speed 

and reprogramming efficiency, and has been accomplished by two general strategies. In the 

first approach, a lineage-specific gene cocktail is used, similar to the iN strategy. This 

employs reprogramming cocktails such as Brn2, FoxG1, and Sox2. iNSC generation has 

also been accomplished using Sox2 alone but required extensive culturing on feeder cells. 

Alternatively, restricting the expression of the Yamanaka factors (Oct4, Sox2, Klf4, c-Myc) 

can also be used to create iNSCs. Regardless of the approach, the forced expression of these 

“master regulators” controls numerous downstream pathways that are critical for initiating 

NSC lineage-specific differentiation, thus bypassing the iPSC stage to directly converting 

fibroblasts into iNSCs. iNSCs have been shown to differentiate into astrocytes, neurons, and 

oligodendrocytes in vitro and in vivo. Unlike iPSCs, iNSCs have been shown to not form 

cancerous teratomas when transplanted in vivo. This is an important advancement in safety 
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for cell transplant therapy. Similar to iPSC-derived NSCs, iNSCs hold significant potential 

for creating personalized NSC therapies without the need for invasive intracranial biopsy. 

Extensive future studies will be needed to fully uncover the potential of iNSCs as a valid 

source of drug carriers for treatment of GBM.

4. Homing

The main function of NSCs in the brain is to replace lost or injured neurons and glia by 

differentiation after migration to the injured zone. This migration to injured tissue is 

triggered by hypoxia through the associated up-regulation of the transcription factor 

hypoxia-inducible factor-1α (HIF-1α), which in turn activates the expression of NSC 

chemoattractants. These include chemokines and pro-angiogenic growth factors such as 

stromal cell-derived factor 1 (SDF-1), monocyte chemotactic protein 1 (MCP1), FGF2, 

insulin-like growth factor 1 (IGF1) and vascular endothelial growth factor (VEGF) [45]. 

NSC migration not only occurs towards areas of injury, but also occurs towards tumor foci. 

The tumoritropic homing of NSCs is driven by chemoattractants produced by cells in the 

normal brain that are injured due to tumor growth or directly released from the GBM cells 

themselves [46,47]. The tumoritropic migration of NSCs occurs across different NSC lines, 

GBMs lines, and routes of NSC administration. The NSC cell lines studied include C17.2 

(murine) [48,49], HB1. F3 (human) [50,51], bone marrow-derived neural progenitor stem 

cells (murine) [52], primary murine NSC [53], and HNT2RA2 (human) [54]. The number of 

GBM cell lines used for these studies are large and include murine cell lines such as GL261 

[53], RG2 [52], C6 [55], and CNS-1 [6] as well as the human cell lines U87 [54], U-373 

[50] and U251 [56]. Additionally, new invasive patient-derived GBM lines are allowing 

investigations into the ability of NSCs to track GBM cells as they invade the brain 

parenchyma [57,58]. The ability of the NSCs to migrate towards the tumor has been 

described by different groups and is not restricted to tumors of glial origin [30], as NSCs are 

known to migrate to metastatic breast cancer and melanoma foci in the brain [59,60]. This is 

important considering that metastatic brain tumors are estimated to be about ten times more 

common than primary brain cancers.

NSC tropism is typically studied in vivo by implanting GBMs and NSCs in different 

hemispheres of the rodent brain [6,32,61]. The most common route of administration in vivo 
has been contralateral injection of NSCs and GBM. Tissue sections are then collected to 

visualize the dynamics of NSC co-localization with GBM foci over time. However, other 

administration routes have been investigated, including tail vein [6,56,62], ipsilateral 

[32,55], intracarotid [63], and intraventricular [6,64]. Despite extensive studies of cell 

migration, no approach has considered the more clinically-relevant case of NSC 

administration after resection of the tumor. As a consequence of the environment created 

after resection, both survival and migration patterns can differ considerably from those 

observed to date [65]. Due to the large number of different conditions applied, it is difficult 

to definitively compare NSC homing to GBM among cell types. However, in general, the 

kinetics observed describes a migratory movement that starts as soon as 50 min after 

implantation [50] and persists for up to 2 weeks [51]. These models are allowing unique 

insights into the kinetics of NSC migration, but the small size of the rodent models have left 

many translational questions unanswered. Investigating NSC tumoritropic migration in 
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large-scale models will be essential for disentangling questions of generation and therapeutic 

efficacy related to size and species differences that could dramatically impact clinical testing 

of NSC therapies in GBM patients.

The majority of in vitro studies still rely on 2-dimensional (2-D) cell culture models, such as 

Boyden chamber assays [62,66]. Advances in three-dimensional (3-D) cell culture have 

raised the possibility of exploring NSC migration in models that better reproduce 

physiologic conditions [67]. Culturing cells in 2-D or 3-D affects cellular behaviors in many 

ways such as attachment, growth, spreading, morphology, polarity, motility, protein 

expression, proliferation, viability, and response to stimuli. The main challenge in 3-D 

migration assays is to choose matrices with close characteristics to in vivo conditions [38]. 

For this purpose, different natural and synthetic scaffolds have been used that include 

hydrogel or solid state polymers. However, reproducing all the components present in 

physiological conditions is complicated. Organotypic slice cultures are a convenient 

approach to mimicking in vivo conditions [68]. In this approach, NSC migration is assayed 

over brain slices from rodents previously cut into slices 250 μm thick.

The mechanism guiding the homing to GBM is still not completely understood. 

Nevertheless, it seems clear that as in ischemia, hypoxia is a key factor that triggers homing 

to GBM. In hypoxic conditions, GBM cells upregulate the expression of numerous pro-

angiogenic factors and chemoattractants. To prove the importance of hypoxia in tumoritropic 

migration of NSC towards glioblastoma cells, different siRNA-mediated knockdowns have 

been used. For example, knockdown of HIF-1α in GBM cells reduces the expression of 

SDF-1, uPA and VEGF, resulting in no tumor tropism of NSC [46]. Other cytokines, growth 

factors, and receptors have been reported to mediate tumoritropic migration, including 

(SCF)/c-Kit [69], monocyte chemotactic protein-1 (MCP-1)/CCL2 [48], annexin A2 [70], 

hepatocyte growth factor (HGF)/c-Met [71] and HMGB1/RAGE [72].

The presence of functional tumoritropic receptors on NSCs dictates the migration pattern as 

is proven by function-inhibiting antibodies to these receptors that reduce NSC migration 

towards GBMs. Future research focusing on increasing the number of tumoritropic receptors 

on NSCs could considerably improve NSC homing to GBMs. One of these approaches could 

include hypoxic preconditioning of the NSCs. Tumoritropic receptors have been reported to 

be upregulated on NSCs under hypoxic conditions [46]. Additionally, chemotherapy and 

radiation have both been shown to promote hypoxia-induced secretion of chemokines by 

tumor cells [73]. This suggests that hypoxia synergistically upregulates the chemotactic 

signal strength emanating from the tumor as well as the sensitivity of the NSCs to that 

signal, potentiating enhanced NSC tropism in a clinical setting where these treatment 

regimens are frequently combined. Another approach could involve genetically engineering 

NSCs to overexpress tumoritropic proteins for enhanced GBM homing [49]. This type of 

approach is currently widely used in tissue regeneration applications to increase stem cell 

homing to sites of injury [74].
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5. Tumoricidal agents

5.1. Enzyme/prodrug

Enzyme/prodrug therapy was the first approach used for engineered NSC therapy and the 

first strategy to enter human patient testing [6,32]. In this approach, the NSCs are engineered 

to express an enzyme that converts a non-toxic prodrug into a cytotoxic product. This allows 

more precise control of the timing, levels, and location of drug release. This approach also 

adds an additional layer of safety as the prodrug typically kills the NSC drug carrier [75]. 

Cytosine deaminase (CD) was used in the first pioneering studies by Aboody et al. [6]. This 

enzyme converts the 5-fluorocytosine (5-FC) prodrug into the toxic 5-fluorouracil (5-FU) 

variant. Initial studies showed mouse NSCs bearing CD significantly inhibited growth of 

GBMs following 5-FC administration. The human HB1.F3 cell line was engineered with CD 

(HB1.F3.CD) and has been one of the most widely used cytotoxic human NSC therapies [2]. 

Extensive pre-clinical data showing the efficacy and safety of the HB1.F3.CD/5-FC therapy 

recently advanced the field of cytotoxic NSC therapy for GBM into the first-in-human 

clinical trial (ClinicalTrials.gov identifier NCT01172964). In this trial, HB1.F3.CD cells are 

injected into the walls of the GBM resection cavity and patients are administered oral 5-FC 

[32]. A new clinical trial has recently been launch around a second enzyme/prodrug 

approach (ClinicalTrials.gov identifier NCT02192359), exploring the efficacy of allogeneic 

human NSCs expressing carboxylesterase (CE) in combination with intravenous irinotecan 

also for recurrent GBM patients. CE converts irinotecan into the toxic agent SN-38 and was 

expressed in the HB1.F3.CD cells using adenoviral transduction [76].

Thymidine kinase from the herpes simplex virus (HSV-TK) was used in multiple proof-of-

concept suicide gene therapy studies [77–80]. Variations of this system and HSV-TK-based 

combination therapies remain some of the most widely used approaches in both clinical and 

experimental gene therapy applications. Mechanistically, HSV-TK phosphorylates the 

prodrug monophosphorylate ganciclovir (GCV) into cytotoxic triphosphate ganciclovir 

(GCV-TP). However, since it reacts with HSV-TK at a 1000-fold higher efficiency compared 

to endogenous TK, GCV can be administered systemically while only producing local GCV-

TP in targeted regions. GCV-TP is then integrated into nearby cells’ DNA during division, 

causing inhibition of DNA polymerase, rapid chain termination, and the formation of single 

strand breaks, leading to cell death [81,82]. This process primarily affects highly 

proliferative cancer cells, further minimizing damage to healthy tissue.

Cells transduced with HSV-TK in the presence of GCV exert potent bystander effects by 

transfer of GCV-TP across gap junctions [78]. In a phase III clinical trial, fibroblasts 

transduced with HSV-TK were injected into the walls of the brain cavity after tumor 

resection [83]. Unfortunately, no significant differences were observed between treated and 

control groups. The possible causes can be the use of murine-derived cells, non-migratory 

fibroblasts, or a combination of various technical factors. Since this study, several preclinical 

models have been developed which use tumorhoming NSCs in place of non-migratory 

fibroblasts to improve upon therapeutic efficacy. Li et al. showed that intratumoral injection 

of NSCs transduced with HSV-TK (NSCs-TK) followed by daily intraperitoneal injections 

of GCV for 10 days (two 15 mg/kg doses per day) effectively treated C6 gliomas in rats, 
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with six of nine animals surviving 100 days post injection with no remaining signs of tumor 

presence [79]. In a more clinically-relevant approach, Zhao et al. injected U87 cells into the 

right hemisphere of mouse brains followed by NSC-TK injection in the contralateral 

hemisphere 7 days later. Despite having to migrate to the opposite hemisphere to co-localize 

with tumor cells, GCV-treated mice survived nearly twice as long as control groups [84]. 

These preclinical studies establish that problems associated with failure of the phase III 

clinical trial may be circumvented in future clinical studies, and that TK remains a 

promising option for glioma therapy. Additionally, new HSV-TK mutants which potentiate 

the bystander effect with increased substrate specificity have been discovered and 

characterized. The most extensively evaluated of these is the mutant SR39, which is 43-fold 

more sensitive to GCV than the parental HSV-TK [85,86].

5.2. Secreted agents

NSCs can function as in situ drug factories, secreting anti-cancer agents for long durations. 

Selecting agents that induce killing in GBM cells without killing the NSC is a challenge. 

One of the most commonly used secreted therapeutic agents is TNFα-related apoptosis-

inducing ligand (TRAIL) [87]. The interest in TRAIL as a prime candidate for NSC-based 

cancer therapy is due to its ability to induce apoptosis in a tumor-specific manner. TRAIL-

induced cell death begins with the molecule binding as a trimer to death receptors which are 

present on the surface of cancer cells but absent on most normal tissue [88]. Engagement of 

the death receptor triggers the assembly of the death-inducing signaling complex (DISC), 

Fas-associated protein with death domain recruitment of caspases, and autocatalytic caspase 

activation that further activates downstream signaling molecules to stimulate the apoptotic 

cascade. Numerous variants of TRAIL have been generated [87]. One of the most potent 

variants designed specifically for secretion from NSCs was created by fusing the 

extracellular domain of Flt3 ligand to the amino-terminus of the TRAIL extracellular 

domain via a leucine-zipper motif (S-TRAIL) [61]. This new molecule was shown to be 

robustly released by NSCs and induce potent bystander effects in various preclinical models 

of GBM. Variations in the expression levels of death receptors on GBM cells can result in 

heterogeneous TRAIL killing. Pre-treatment of GBM cells with the clinically utilized 

chemotherapy temozolomide increases death receptor expression and improves killing of 

TRAIL-resistant tumor cells [89]. The histone deacetylase inhibitor MS-275 was also found 

to upregulate death receptors in numerous GBM cell lines and sensitize tumor cells to 

TRAIL-induced apoptosis [90]. In a new approach to TRAIL therapy, a fusion between an 

anti-epidermal growth factor receptor nanobody and TRAIL showed significant cytotoxicity 

against a panel of GBM cells in culture and reduced the volume of both solid and invasive 

GBM xenografts in mice [58].

A variety of studies have explored the delivery of immune-modulating agents from NSCs. 

Interleukin (IL)-4 [7], IL-12 [91], IL-23 [92], and IL-24 [93] have all been delivered by 

genetically modified NSCs. This therapeutic strategy has been shown to slow GBM growth 

in preclinical models and significantly extend the survival of tumor bearing mice. Similarly, 

NSCs transduced with interferon-β significantly inhibited growth of human GBM xenografts 

and demonstrated a substantial bystander effect [94].
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Targeted immunotoxins are a new cytotoxic agent that can be delivered from stem cells. 

These fusion proteins are comprised of a cytokine fused to a toxin [95,96]. The cytokine 

targets the fusion to receptors selectively expressed on cancer cells, while the toxin induces 

tumor cell death. Immunotoxins, such as interleukin 13-pseudomonas exotoxin fusion 

(IL13-PE) have shown promise in early stage clinical trials of GBM therapy [97], but the 

efficacy of this strategy was limited by inefficient delivery [98]. We recently developed a 

new strategy to engineer NSCs with IL13-PE or other immunotoxins and found this 

approach significantly inhibited GBM recurrence while prolonging survival of tumor-

bearing mice [99]. An interesting advancement in this study was that the NSCs had to first 

be engineered to be resistant to the toxin. In previous studies, the interleukins, TRAIL, and 

other secreted factors had minimal effects on the viability of the engineered NSCs. Yet, PE 

in the immunotoxin induced death of NSCs until they were modified with a single-stranded 

DNA oligonucleotide. This suggests similar strategies could be used to engineer NSCs that 

are resistant to numerous cytotoxic agents and create a multitude of new cytotoxic NSC 

therapies. This could allow therapeutic NSCs to kill a broader range of GBM cells with more 

potent efficacy.

Determining the duration of delivery, bio-distribution, and overall dynamics of NSC-based 

drug delivery is essential for maximizing tumor kill while protecting non-diseased tissue 

from damage. Several novel fusion proteins have been developed that incorporate optical 

reporters conjugated to cytotoxic protein domains. These include a modified Renilla 

luciferase variant fused to TRAIL as well as a Gaussia luciferase fused to interleukin-24 

[100]. Both fusion variants could be detected in vitro and in vivo by bioluminescence 

imaging while retaining the capacity to kill GBM cells. Simultaneous optical tracking of 

NSCs and secreted fusion variants revealed differences in the levels and duration of drug 

release exist between NSCs and mesenchymal stem cells that significantly impacts tumor 

killing. In vivo tracking showed NSC-based delivery significantly prolongs the duration of 

drug delivery while reducing drug accumulation on non-tumor tissue compared to traditional 

intravenous infusion (I.V.) or intratumoral injection (I.T.). Additionally, the improved drug 

delivery translated to improved tumor killing from a single infusion of cytotoxic NSCs 

compared to I.V. or I.T. delivery of free protein therapies.

5.3. Viral therapy

Oncolytic viral (OV) therapy is a promising strategy for GBM [101]. Seven different strains 

of OVs have been tested in over 20 different clinical trials for GBM therapy. Unlike 

traditional attenuated viruses, OVs have the potential to conditionally replicate in cancer 

cells. This replication ultimately causes the tumor cells to lyse and release the newly 

produced virus that infects neighboring tumor cells. In this way, OV therapy spreads through 

the tumor leading to killing. NSCs can be loaded with OV to improve the spread and hide 

the virus from the immune system [66,102]. NSCs transduced with OVs retain the ability to 

home to GBM. In vivo, NSC delivery of OVs showed significantly greater GBM killing than 

the virus alone demonstrating the promise of this approach. As NSC-based OV therapy for 

GBM moves towards clinical trials, the timing of administration may be critical. A recent 

study found NSC-based OV therapy delivered with radiation and temozolomide treatment 
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increased survival, but this was dependent on delivering the NSC/OV after radiation and 

temozolomide treatment was administered [103].

6. Routes of administration

Determining the most effective route to administer cytotoxic NSC therapies represents an 

important step for eventual human use. Direct injection into the established GBM has been 

the mainstay of cytotoxic NSC delivery, and as numerous studies have found, this method 

leads to efficient NSC transplant and robust tumor killing [2,93,100]. However, directly 

injecting NSCs into the immunosuppressive tumor niche improves the survival of human 

NSC transplants and neglects their defining ability to scavenge distant tumor foci [104]. This 

behavior can instead be mimicked by implanting therapeutic NSCs outside the established 

GBM [32,61]. As expected, NSC therapies implanted in the proximity of GBMs are still 

able to slow tumor progression but the effects are not as pronounced as when therapeutic 

NSCs are entirely co-localized with the GBM cells. Interestingly, NSCs delivered by 

intravenous infusion were found to cross the blood-brain barrier and co-localize with GBM 

by immunohistochemical analysis [56,64]. Quantitative optical tracking suggested 

approximately 1.4% of the cells co-localized with the GBM. Of note, this same study 

reported over 4% of NSCs reached the GBM when delivered by intraventricular infusion 

[64].

Surgical resection is part of the clinical standard of care for human GBM patients [105], 

making it important to define strategies capable of efficiently transplanting cytotoxic NSCs 

into postoperative GBM patients. Using a mouse model of GBM resection/recurrence [106], 

we found that NSCs directly injected into the walls of the resection cavity were cleared in 7 

days and the remaining cells only extended survival of tumor-bearing mice by 1 week [65]. 

In contrast, transplanting NSCs encapsulated in hydrogel scaffolds increased the intracavity 

persistence of therapeutic NSCs to over 28 days, improved tumor killing, and extended the 

survival of tumor-bearing mice to over 63 days post-transplant. The mechanisms driving the 

loss of directly injected NSCs from the resection cavity are unclear, yet these findings 

further emphasize the importance of new strategies to effectively transplant cytotoxic NSCs 

into human GBM patients undergoing surgical debulking.

7. Conclusions

Tumoricidal NSC therapy is opening new doors for cancer therapy. The tumor-homing 

capacity of these cells creates a powerful drug delivery platform that provides access to 

invasive cancer foci which traditional surgery, chemotherapy, and radio-therapy cannot 

typically access. NSCs have been engineered with a wide range of therapeutic agents, and 

typically achieve tumor reductions of 70–90% in preclinical models. Despite the success of 

these studies, many challenges still remain. The treatment durability of NSC therapies needs 

to be improved, as tumor recurrence typically occurs despite the initial robust tumor killing. 

As with most chemotherapies, it is unlikely that a single-agent NSC therapy will eradicate 

the tumor. The optimal rationally selected drug combination needs to be determined. The 

recent initiation of two clinical trials will provide exciting new clinical feedback on the 

performance of NSC therapies in human GBM patients. Undoubtedly, new challenges will 
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arise from these trials, and will provide new opportunities to further improve the 

performance of this promising therapy. In this way, a cytotoxic NSC therapy can be 

developed that is capable of providing a true therapeutic benefit to brain cancer patients in a 

clinical setting.
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