273 research outputs found

    The prescribing of prisms in clinical practice

    Get PDF
    The use of prisms in cases of decompensated heterophoria is an established treatment modality. The clinical literature lacks consensus upon the appropriate use of prisms, and fails to provide the necessary evidence base. While the experimental literature can guide the practitioner, the lack of double-blind, placebo-controlled clinical studies needs to be addressed

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Pattern of reading eye movements during monovision contact lens wear in presbyopes

    Get PDF
    Monovision can be used as a method to correct presbyopia with contact lenses (CL) but its effect on reading behavior is still poorly understood. In this study eye movements (EM) were recorded in fifteen presbyopic participants, naïve to monovision, whilst they read arrays of words, non-words, and text passages to assess whether monovision affected their reading. Three conditions were compared, using daily disposable CLs: baseline (near correction in both eyes), conventional monovision (distance correction in the dominant eye, near correction in the non-dominant eye), and crossed monovision (the reversal of conventional monovision). Behavioral measures (reading speed and accuracy) and EM parameters (single fixation duration, number of fixations, dwell time per item, percentage of regressions, and percentage of skipped items) were analyzed. When reading passages, no differences in behavioral and EM measures were seen in any comparison of the three conditions. The number of fixations and dwell time significantly increased for both monovision and crossed monovision with respect to baseline only with word and non-word arrays. It appears that monovision did not appreciably alter visual processing when reading meaningful texts but some limited stress of the EM pattern was observed only with arrays of unrelated or meaningless items under monovision, which require the reader to have more in-depth controlled visual processing

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Cognition and bimanual performance in children with unilateral cerebral palsy: Protocol for a multicentre, cross-sectional study

    Get PDF
    © 2018 The Author(s). Background: Motor outcomes of children with unilateral cerebral palsy are clearly documented and well understood, yet few studies describe the cognitive functioning in this population, and the associations between the two is poorly understood. Using two hands together in daily life involves complex motor and cognitive processes. Impairment in either domain may contribute to difficulties with bimanual performance. Research is yet to derive whether, and how, cognition affects a child's ability to use their two hands to perform bimanual tasks. Methods/Design: This study will use a prospective, cross-sectional multi-centre observational design. Children (aged 6-12 years) with unilateral cerebral palsy will be recruited from one of five Australian treatment centres. We will examine associations between cognition, bimanual performance and brain neuropathology (lesion type and severity) in a sample of 131 children. The primary outcomes are: Motor - the Assisting Hand Assessment; Cognitive - Executive Function; and Brain - lesion location on structural MRI. Secondary data collected will include: Motor - Box and Blocks, ABILHAND- Kids, Sword Test; Cognitive - standard neuropsychological measures of intelligence. We will use generalized linear modelling and structural equation modelling techniques to investigate relationships between bimanual performance, executive function and brain lesion location. Discussion: This large multi-centre study will examine how cognition affects bimanual performance in children with unilateral cerebral palsy. First, it is anticipated that distinct relationships between bimanual performance and cognition (executive function) will be identified. Second, it is anticipated that interrelationships between bimanual performance and cognition will be associated with common underlying neuropathology. Findings have the potential to improve the specificity of existing upper limb interventions by providing more targeted treatments and influence the development of novel methods to improve both cognitive and motor outcomes in children with unilateral cerebral palsy

    Expression of Mir-21 and Mir-143 in Cervical Specimens Ranging from Histologically Normal through to Invasive Cervical Cancer

    Get PDF
    MicroRNA expression is severely disrupted in carcinogenesis, however limited evidence is available validating results from cell-line models in human clinical cancer specimens. MicroRNA-21 (mir-21) and microRNA-143 (mir-143) have previously been identified as significantly deregulated in a range of cancers including cervical cancer. Our goal was to investigate the expression patterns of several well-studied microRNA species in cervical samples and compare the results to cell line samples.We measured the expression of mir-21 and mir-143 in 142 formalin-fixed, paraffin embedded (FFPE) cervical biopsy tissue blocks, collected from Dantec Oncology Clinic, Dakar, Senegal. MicroRNA expression analysis was performed using Taqman-based real-time PCR assays. Protein immunohistochemical staining was also performed to investigate target protein expression on 72 samples. We found that mir-21 expression increased with worsening clinical diagnosis but that mir-143 was not correlated with histology. These observations were in stark contrast to previous reports involving cervical cancer cell lines in which mir-143 was consistently down-regulated but mir-21 largely unaffected. We also identified, for the first time, that cytoplasmic expression of Programmed Cell Death Protein 4 PDCD4; a known target of mir-21) was significantly lower in women with invasive cervical carcinoma (ICC) in comparison to those with cervical intraepithelial neoplasia (2-3) or carcinoma in situ (CIN2-3/CIS), although there was no significant correlation between mir-21 and PDCD4 expression, despite previous studies identifying PDCD4 transcript as a known mir-21 target.Whilst microRNA biomarkers have a number of promising features, more studies on expression levels in histologically defined clinical specimens are required to investigate clinical relevance of discovery-based studies. Mir-21 may be of some utility in predictive screening, given that we observed a significant correlation between mir-21 expression level and worsening histological diagnosis of cervical cancer

    Genetic or Other Causation Should Not Change the Clinical Diagnosis of Cerebral Palsy

    Get PDF
    High throughput sequencing is discovering many likely causative genetic variants in individuals with cerebral palsy. Some investigators have suggested that this changes the clinical diagnosis of cerebral palsy and that these individuals should be removed from this diagnostic category. Cerebral palsy is a neurodevelopmental disorder diagnosed on clinical signs, not etiology. All nonprogressive permanent disorders of movement and posture attributed to disturbances that occurred in the developing fetal and infant brain can be described as "cerebral palsy." This definition of cerebral palsy should not be changed, whatever the cause. Reasons include stability, utility and accuracy of cerebral palsy registers, direct access to services, financial and social support specifically offered to families with cerebral palsy, and community understanding of the clinical diagnosis. Other neurodevelopmental disorders, for example, epilepsy, have not changed the diagnosis when genomic causes are found. The clinical diagnosis of cerebral palsy should remain, should prompt appropriate genetic studies and can subsequently be subclassified by etiology

    Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System

    Get PDF
    Anna Ökvist is with Karolinska Institute, Sofia Johansson is with Karolinska Institute, Alexander Kuzmin is with Karolinska Institute, Igor Bazov is with Karolinska Institute, Roxana Merino-Martinez is with Karolinska Institute, Igor Ponomarev is with UT Austin, R. Dayne Mayfield is with UT Austin, R. Adron Harris is with UT Austin, Donna Sheedy is with University of Sydney, Therese Garrick is with University of Sydney, Clive Harper is with University of Sydney, Yasmin L. Hurd is with Mount Sinai School of Medicine, Lars Terenius is with Karolinska Institute, Tomas J. Ekström is with Karolinska Institute, Georgy Bakalkin is with Karolinska Institute and Uppsala University, Tatjana Yakovleva is with Karolinska Institute and Uppsala University.Background -- Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings -- Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions -- We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.This work was supported by grants from the AFA Forsäkring to AK, YLH, TJE and GB, the Research Foundation of the Swedish Alcohol Retail Monopoly (SRA) and Karolinska Institutet to AK, TJE and GB, and the Swedish Science Research Council and the Swedish National Drug Policy Coordinator to GB. The Australian Brain Donor Programs NSW Tissue Resource Centre was supported by The University of Sydney, National Health and Medical Research Council of Australia, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.Waggoner Center for Alcohol and Addiction Researc

    The regulation of IL-10 expression

    Get PDF
    Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells

    miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1

    Get PDF
    As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al
    corecore