323 research outputs found
Mean-field description of pairing effects, BKT physics, and superfluidity in 2D Bose gases
We derive a mean-field description for two-dimensional (2D) interacting Bose gases at arbitrary temperatures. We find that genuine Bose-Einstein condensation with long-range coherence only survives at zero temperature. At finite temperatures, many-body pairing effects included in our mean-field theory introduce a finite amplitude for the pairing density, which results in a finite superfluid density. We incorporate Berezinskii-Kosterlitz-Thouless (BKT) physics into our model by considering the phase fluctuations of our pairing field. This then leads to the result that the superfluid phase is only stable below the BKT temperature due to these phase fluctuations. In the weakly interacting regime at low temperature we compare our theory to previous results from perturbative calculations, renormalization group calculations as well as Monte Carlo simulations. We present a finite-temperature phase diagram of 2D Bose gases. One signature of the finite amplitude of the pairing density field is a two-peak structure in the single-particle spectral function, resembling that of the pseudogap phase in 2D attractive Fermi gases. © 2014 Elsevier Inc
Dihydrochalcone glycosides from Oxytropis myriophylla
Chemical investigations of the 70% alcohol extract of Oxytropis myriophylla (Pall.) DC. (Leguminosae) have afforded the new natural product neohesperidin dihydrochalcone (1) and the known phloretin-4'-O-β-D-glucopyranoside (2), which was the first reported from the genus Oxytropis. This paper reports the isolation and full spectroscopic characterization of compounds 1 and 2 by NMR, UV, IR and MS data
Optimal Glycated Hemoglobin Cutoff for Diagnosis of Diabetes and Prediabetes in Chinese Breast Cancer Women
Xin-Yu Liang,1,* Li-yuan Mu,1,* Lei Hu,2,* Rui-ling She,1,* Chen-yu Ma,1,* Jun-han Feng,1,* Zhi-yu Jiang,1 Zhao-xing Li,1 Xiu-quan Qu,1 Bai-qing Peng,1 Kai-nan Wu,1 Ling-quan Kong1 1Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 2Information Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China*These authors contributed equally to this workCorrespondence: Ling-quan Kong, Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel +8613101380893, Email [email protected]: Glycated hemoglobin (HbA1c) is widely used in diabetes management and now recommended for diagnosis and risk assessment. Our research focused on investigating the optimal cutoff points of HbA1c for diagnosis of diabetes and prediabetes in Chinese breast cancer women, aiming to enhance early detection and tailor treatment strategies.Patients and Methods: This study involved 309 breast cancer women without diabetes history in China. Patients were categorized into groups of newly diagnosed diabetes, prediabetes, and normal glucose tolerance using oral glucose tolerance test (OGTT) according to the 2010 ADA criteria. HbA1c data were collected from all patients. Receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the HbA1c screening.Results: Among the 309 breast cancer women without diabetes history, 96 (31.0%) were identified with diabetes and 130 (42.1%) had prediabetes according to OGTT, and the incidence of normal glucose tolerance was only 26.9% (83). ROC curve analysis, using OGTT as a reference, revealed that the area under the curve of 0.903 (P< 0.001, 95% CI, 0.867– 0.938) for HbA1c alone, indicating high accuracy. The optimal HbA1c cutoff for identifying diabetes was determined to be 6.0%, with a sensitivity of 78.1% and specificity of 86.4%. For prediabetes, the ROC curve for HbA1c alone showed that the area under the ROC curve of 0.703 (P< 0.001, 95% CI, 0.632– 0.774), with an optimal cutoff of 5.5% (sensitivity of 76.9% and specificity of 51.8%).Conclusion: The prevalence of undiagnosed diabetes is very high in breast cancer women without diabetes history in China. The optimal cutoff points of HbA1c for identifying diabetes and prediabetes are 6.0% and 5.5% in Chinese breast cancer women, respectively.Keywords: breast cancer, diabetes, HbA1c, prediabete
CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production
The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-kappa B, and tissue protective factors including fibrin. However, molecular pathways connecting NF-kappa B and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-kappa B-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-kappa B-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-kappa B activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-kappa B/IL-6/STAT3 pathway and fibrin production
Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells
<p>Abstract</p> <p>Background</p> <p>Previously we reported extensive gene expression reprogramming during epithelial to mesenchymal transition (EMT) of primary prostate cells. Here we investigated the hypothesis that specific histone and DNA methylations are involved in coordination of gene expression during EMT.</p> <p>Results</p> <p>Genome-wide profiling of histone methylations (H3K4me3 and H3K27me3) and DNA methylation (DNAMe) was applied to three cell lines at different stages of a stepwise prostate cell model involving EMT and subsequent accumulation of malignant features. Integrated analyses of epigenetic promoter modifications and gene expression changes revealed strong correlations between the dynamic changes of histone methylations and gene expression. DNA methylation was weaker associated with global gene repression, but strongly correlated to gene silencing when genes co-modified by H3K4me3 were excluded. For genes labeled with multiple epigenetic marks in their promoters, the level of transcription was associated with the net signal intensity of the activating mark H3K4me3 minus the repressive marks H3K27me3 or DNAMe, indicating that the effect on gene expression of bivalent marks (H3K4/K27me3 or H3K4me3/DNAMe) depends on relative modification intensities. Sets of genes, including epithelial cell junction and EMT associated fibroblast growth factor receptor genes, showed corresponding changes concerning epigenetic modifications and gene expression during EMT.</p> <p>Conclusions</p> <p>This work presents the first blueprint of epigenetic modifications in an epithelial cell line and the progeny that underwent EMT and shows that specific histone methylations are extensively involved in gene expression reprogramming during EMT and subsequent accumulation of malignant features. The observation that transcription activity of bivalently marked genes depends on the relative labeling intensity of individual marks provides a new view of quantitative regulation of epigenetic modification.</p
Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor
Effects of calcination temperatures varying from 400 to 1000°C on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in the sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate (THEOS) as water-soluble silica precursor have been investigated. Studies carried out using XRD, FT-IR, TEM, STA (TG-DTG-DTA) and VSM techniques. Results indicated that magnetic properties of samples such as superparamagnetism and ferromagnetism showed great dependence on the variation of the crystallinity and particle size caused by the calcination temperature. The crystallization, saturation magnetization Ms and remenant magnetization Mr increased as the calcination temperature increased. But the variation of coercivity Hc was not in accordance with that of Ms and Mr, indicating that Hc is not determined only by the crystallinity and size of CoFe2O4 nanoparticles. TEM images showed spherical nanoparticles dispersed in the silica network with sizes of 10-30 nm. Results showed that the well-established silica network provided nucleation locations for CoFe2O4 nanoparticles to confinement the coarsening and aggregation of nanoparticles. THEOS as silica matrix network provides an ideal nucleation environment to disperse CoFe2O4 nanoparticles and thus to confine them to aggregate and coarsen. By using THEOS as water-soluble silica precursor over the currently used TEOS and TMOS, the organic solvents are not needed owing to the complete solubility of THEOS in water. Synthesized nanocomposites with adjustable particle sizes and controllable magnetic properties make the applicability of Co-ferrite even more versatile
Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2
<p>Abstract</p> <p>Background</p> <p>Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid.</p> <p>Methods</p> <p>The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays.</p> <p>Results</p> <p>Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid.</p> <p>Conclusions</p> <p>Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.</p
Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model
<p>Abstract</p> <p>Background</p> <p>There is strong evidence demonstrating that activation of epidermal growth factor receptors (EGFRs) leads to tumor growth, progression, invasion and metastasis. Erlotinib and gefitinib, two EGFR-targeted agents, have been shown to be relevant drugs for lung cancer treatment. Recent studies demonstrate that lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER-2 receptors, is clinically effective against HER-2-overexpressing metastatic breast cancer. In this report, we investigated the activity of lapatinib against non-small cell lung cancer (NSCLC).</p> <p>Methods</p> <p>We selected the lung cancer cell line A549, which harbors genomic amplification of EGFR and HER-2. Proliferation, cell cycle analysis, clonogenic assays, and signaling cascade analyses (by western blot) were performed <it>in vitro</it>. <it>In vivo </it>experiments with A549 cells xenotransplanted into nude mice treated with lapatinib (with or without radiotherapy) were also carried out.</p> <p>Results</p> <p>Lapatinib dramatically reduced cell proliferation (<it>P </it>< 0.0001), DNA synthesis (<it>P </it>< 0.006), and colony formation capacity (<it>P </it>< 0.0001) in A549 cells <it>in vitro</it>. Furthermore, lapatinib induced G1 cell cycle arrest (<it>P </it>< 0.0001) and apoptotic cell death (<it>P </it>< 0.0006) and reduced cyclin A and B1 levels, which are regulators of S and G2/M cell cycle stages, respectively. Stimulation of apoptosis in lapatinib-treated A549 cells was correlated with increased cleaved PARP, active caspase-3, and proapoptotic Bak-1 levels, and reduction in the antiapoptic IAP-2 and Bcl-xL protein levels. We also demonstrate that lapatinib altered EGFR/HER-2 signaling pathways reducing p-EGFR, p-HER-2, p-ERK1/2, p-AKT, c-Myc and PCNA levels. <it>In vivo </it>experiments revealed that A549 tumor-bearing mice treated with lapatinib had significantly less active tumors (as assessed by PET analysis) (<it>P </it>< 0.04) and smaller in size than controls. In addition, tumors from lapatinib-treated mice showed a dramatic reduction in angiogenesis (<it>P </it>< 0.0001).</p> <p>Conclusion</p> <p>Overall, these data suggest that lapatinib may be a clinically useful agent for the treatment of lung cancer.</p
- …