50 research outputs found

    Parenting Practices and Aggression in Childhood Behaviour Disorders

    Get PDF
    Objective: To determine the association between parenting practices and aggression in children with behaviour disorders. Study Design: Cross-sectional study. Place and Duration of Study: Children Hospital and Institute of Child Health, Lahore Pakistan, from Nov 2020 to Jan 2021. Methodology: Parents of children and eighty-five children between the ages of 3 to 12 years with the diagnosis of behaviour disorders (autism spectrum disorder, attention deficit hyperactive disorder, social communication disorder) and showing aggressive behaviour were enrolled. The multidimensional assessment of parenting scale was used to assess positive(proactive parenting, positive reinforcement, warmth and supportiveness) and negative (hostility, lax control, physical control) parenting practices. The modified overt aggression scale was used to assess aggression, including verbal aggression,aggression against property, auto-aggression (towards self), and physical aggression (towards others). Correlation and multiple regression analysis were done. Results: Among negative practices, it was found that leniency and inconsistent parenting (lax control) was significant positive predictor of aggression (p<0.01) in children with behaviour disorders. Supportiveness was a significant negative predictor of verbal aggression (p<0.01), while physical control positively predicted total aggression (p<0.05). Among positive parenting practices, positive reinforcement decreased auto aggression (p<0.05) in children with behaviour disorders. Lower maternal education correlated with more aggressive behaviours (p<0.05) in these children. Conclusion: Negative parenting practices may lead to aggression in children with behaviour disorders. While positive reinforcement by parents may encourage less self-harm in these children and help improve their behaviour problems

    Assessment of Children with Cerebral Palsy Using Common Brief Core Set of International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY)

    Get PDF
    Objective: To assess children with cerebral palsy using the Common Brief Core Set of International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY). Study Design: Cross-sectional study Place and Duration of Study: Children Hospital & Institute of Child Health, Lahore Pakistan, from Nov 2020 to Jan 2021. Methodology: Fifty-nine children with cerebral palsy (CP) aged 0-18 years were included. Common Brief Core Set of International Classification of Functioning, Disability, and Health in Children and Youth (ICF-CY) was administered to children with cerebral palsy to assess their functional status. Strengths and weaknesses in body structure, body function,activity and participation and environmental factors were evaluated using the Common Brief Core Set of ICF-CY. Results: The majority of study participants were 38(64.4%), were spastic quadriplegic. Periventricular leukomalacia was noted in 36(67.9%) cases on MRI brain. Moderate to severe impairment was noted in body functions like intellectual function 46(78%). In addition, 26(44.1%) children with cerebral palsy had mild to moderate impairment in walking, while 4(6.8 %) could walk without any impairment. Social attitudes, construct, and design of buildings were the major barriers affecting the functionality of children with cerebral palsy. Conclusion: It was found that the Common Brief Core Set of ICF-CY in children with different types of cerebral palsy is a useful tool for assessing their functional level. Keywords: Cerebral Palsy, Common Brief Core Set, Disability, Health in Children and Youth (ICF-CY), International Classification of Functioning.

    Consolidating the association of biallelic MAPKAPK5 pathogenic variants with a distinct syndromic neurodevelopmental disorder

    Get PDF
    [Background]: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called ‘neurocardiofaciodigital’ syndrome. [Objective and methods]: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. [Results]: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. [Conclusion]: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome.HH is funded by the MRC (MR/S01165X/1, MR/S005021/1, G0601943), the National Institute for Health Research University College London Hospitals Biomedical Research Centre, Rosetree Trust, Ataxia UK, MSA Trust, Brain Research UK, Sparks GOSH Charity, Muscular Dystrophy UK (MDUK), Muscular Dystrophy Association (MDA USA). SE is supported by an MRC strategic award to establish an International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) MR/S005021/1’

    Consolidating the association of biallelic MAPKAPK5 pathogenic variants with a distinct syndromic neurodevelopmental disorder

    Get PDF
    BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome

    Establishing performance standards for child development: learnings from the ECDI2030

    Get PDF
    Background: Standards of early childhood development (ECD) are needed to determine whether children living in different contexts are developmentally on track. The Early Childhood Development Index 2030 (ECDI2030) is a population-level measure intended to be used in household surveys to collect globally comparable data on one of the indicators chosen to monitor progress toward target 4.2 of the Sustainable Development Goals: The proportion of children aged 24–59 months who are developmentally on track in health, learning and psychosocial well-being. Methods: To define performance cut-scores for the ECDI2030 we followed a criterion-referenced standard setting exercise using the modified Angoff method. The exercise gauged the expectations from 15 global experts in ECD and was informed by representative population data collected in Mexico and the State of Palestine. The final calibrated age-specific performance cut-scores were applied to these data to estimate the proportion of children developmentally on track, disaggregated by background characteristics, including the child's sex and attendance to early childhood education. Results: Through a process of standard setting, we generated robust performance standards for the ECDI2030 by establishing five age-specific cut-scores to identify children as developmentally on track. Conclusions: This paper demonstrated how the standard setting methodology, typically applied to measures in the health and education fields, could be applied to a measure of child development. By creating robust criterion-referenced standards, we have been able to ensure that the cut-scores related to age for the ECDI2030 are based on performance standards set by global experts in the ECD field for defining on and off track development

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome.

    Get PDF
    BACKGROUND: Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening

    MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia

    Get PDF
    The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021Peer reviewe

    Lunapark deficiency leads to an autosomal recessive neurodevelopmental phenotype with a degenerative course, epilepsy and distinct brain anomalies

    Get PDF
    LNPK encodes a conserved membrane protein that stabilizes the junctions of the tubular endoplasmic reticulum network playing crucial roles in diverse biological functions. Recently, homozygous variants in LNPK were shown to cause a neurodevelopmental disorder (OMIM#618090) in four patients displaying developmental delay, epilepsy and nonspecific brain malformations including corpus callosum hypoplasia and variable impairment of cerebellum. We sought to delineate the molecular and phenotypic spectrum of LNPK-related disorder. Exome or genome sequencing was carried out in 11 families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals, including review of previously reported patients. We identified 12 distinct homozygous loss-of-function variants in 16 individuals presenting with moderate to profound developmental delay, cognitive impairment, regression, refractory epilepsy and a recognizable neuroimaging pattern consisting of corpus callosum hypoplasia and signal alterations of the forceps minor ('ear-of-the-lynx' sign), variably associated with substantia nigra signal alterations, mild brain atrophy, short midbrain and cerebellar hypoplasia/atrophy. In summary, we define the core phenotype of LNPK-related disorder and expand the list of neurological disorders presenting with the 'ear-of-the-lynx' sign suggesting a possible common underlying mechanism related to endoplasmic reticulum-phagy dysfunction

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome

    Get PDF
    Background: Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. Methods: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. Results: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/-, but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. Conclusions: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening

    Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders.

    Get PDF
    Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders
    corecore