114 research outputs found

    Revisiting retinoblastoma protein phosphorylation during the mammalian cell cycle

    Full text link
    It is widely accepted that phosphorylation of the retinoblastoma (Rb) protein during the G1 phase of the mammalian division cycle is a major control element regulating passage of cells into S phase and through the division cycle. The experiments supporting G1-phase-specific Rb phosphorylation and the historical development of this idea are reviewed. By making a rigorous distinction between 'growth cessation' and the phenomena of 'cell cycle exit' or 'G1-phase arrest', the evidence for the G1-phase-specific phosphorylation of Rb protein is reinterpreted. We show that the evidence for G1-phase phosphorylation of Rb rests on few experiments and a chain of reasoning with some weak links. Evidence is reviewed that growth conditions regulate the phosphorylation of Rb. A growth-regulated control system that is independent of the cell cycle explains much of the evidence adduced to support cycle-specific phosphorylation of Rb. We propose that additional experimental evidence is needed to decide whether there is a G1-phase-specific phosphorylation of Rb protein.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41833/1/18-58-4-580_10580580.pd

    Role of diradylglycerol formation in H2O2 and lactoferrin release in adherent human polymorphonuclear leukocytes

    Full text link
    Polymorphonuclear leukocytes (PMNs) adherent to fibrinogen exhibit a delay in the release of H2O2 in response to fMLP. Previously, we demonstrated that H2O2 release in adherent PMNs coincides with the exocytosis of lactoferrin‐containing specific granules and activation of phospholipase D (PLD). We also found that chelation of intracellular calcium blocked both lactoferrin and H2O2 release in stimulated PMNs in spite of the fact that adhesion and spreading remained normal. Since diradylglycerol (DRG) formation has been implicated in PMN secretion and oxidant release, we determined the effect of intracellular calcium chelation on PLD activation and DRG formation to ascertain whether DRG formation was coupled to lactoferrin and H2O2 release. We observed that chelation of intracellular calcium with bis‐(O‐aminophenoxy)‐ethanol‐N,N;N’‐ tetraacetic add (BAPTA) prevented PLD activation as monitored by inhibition of phosphatidylethanol formation. Formation of DRG derived from phosphatidic acid (PA) was also inhibited in the presence of BAPTA. Following the addition of the calcium ionophore ionomycin to the BAPTA‐treated PMNs, lactoferrin and H2O2 release was coincident with the onset of DRG formation. Also the addition of sn‐1,2‐didecanoylglycerol to the BAPTA‐treated PMNs stimulated them to release H2O2. Our studies support the hypothesis that DRG derived from PLD activation is required for degranulation of specific granules and associated H2O2 release from adherent PMNs. J. Leukoc. Biol. 56: 105–109; 1994.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141596/1/jlb0105.pd

    Effect of an Inhibitor of Glucosylceramide Synthesis on Cultured Human Keratinocytes

    Full text link
    Glucosylceramide (GlcCer) is a major glycosphingolipid component of epidermis, which is thought to be related to the barrier function of skin permeability. However, the role of glycosphingolipids in keratinocyte growth and differentiation has not been fully clarified. It has been reported that D‐threo‐1‐phenyl‐2‐decanoylamino‐3‐morpholino‐1‐propanol (PDMP), an inhibitor of GlcCer synthase (EC 2.4.1.80), depletes cells of glycosphingolipids. This inhibitor has been used as a tool for elucidating their functions. In the present study, the effect of PDMP on cultured normal human keratinocytes was investigated. The cells were treated with various concentrations of PDMP. Forty‐eight hours later cell growth, thymidine incorporation, and lipid content were studied. The cell growth and the incorporation of thymidine into cells were inhibited by PDMP in a dose dependent manner. The synthesis of GlcCer was strongly inhibited by PDMP treatment, whereas no significant changes in ceramide level were observed. We concluded that GlcCer in epidermis may play an important role in regulating epidermal growth and suggested that PDMP may be beneficial for treating proliferative skin disorders in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111117/1/jde02353.pd

    Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc : ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth

    Get PDF
    The opportunistic mycopathogen Aspergillus fumigatus expresses both glucosylceramide and galactosylceramide (GlcCer and GalCer), but their functional significance in Aspergillus species is unknown. We here identified and characterized a GlcCer from Aspergillus nidulans, a non-pathogenic model fungus. Involvement of GlcCer in fungal development was tested on both species using a family of compounds known to inhibit GlcCer synthase in mammals. Two analogs, D-threo-1-phenyl-2-palmitoyl-3-pyrrolidinopropanol (P4) and D-threo-3',4'-ethylenedioxy-P4, strongly inhibited germination and hyphal growth. Neutral lipids from A. fumigatus cultured in the presence of these inhibitors displayed a significantly reduced GlcCer/GalCer ratio. These results suggest that synthesis of GlcCer is essential for normal development of A. fumigatus and A. nidulans. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.Univ New Hampshire, Dept Chem, Durham, NH 03824 USAUniv Georgia, Dept Bot, Athens, GA 30602 USAUniversidade Federal de São Paulo, Dept Biochem, Escola Paulista Med, BR-04023900 São Paulo, BrazilUniv Michigan, Med Ctr, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USAUniv Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USAUniv Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USAUniversidade Federal de São Paulo, Dept Biochem, Escola Paulista Med, BR-04023900 São Paulo, BrazilWeb of Scienc

    A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem

    Full text link
    We consider the overdamped limit of two-dimensional double well systems perturbed by weak noise. In the weak noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double well system are varied, a unique MPEP may bifurcate into two equally likely MPEP's. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. In this paper we quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our analysis relies on the development of a new scaling theory, which yields `critical exponents' describing weak-noise behavior near the saddle, at the bifurcation point.Comment: LaTeX, 60 pages, 24 Postscript figures. Uses epsf macros to include the figures. A file in `uufiles' format containing the figures is separately available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/figures.uu and a Postscript version of the whole paper (figures included) is available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/paperF.p

    Increased Hepatic Insulin Action in Diet-Induced Obese Mice Following Inhibition of Glucosylceramide Synthase

    Get PDF
    Obesity is characterized by the accumulation of fat in the liver and other tissues, leading to insulin resistance. We have previously shown that a specific inhibitor of glucosylceramide synthase, which inhibits the initial step in the synthesis of glycosphingolipids (GSLs), improved glucose metabolism and decreased hepatic steatosis in both ob/ob and diet-induced obese (DIO) mice. Here we have determined in the DIO mouse model the efficacy of a related small molecule compound, Genz-112638, which is currently being evaluated clinically for the treatment of Gaucher disease, a lysosomal storage disorder.DIO mice were treated with the Genz-112638 for 12 to 16 weeks by daily oral gavage. Genz-112638 lowered HbA1c levels and increased glucose tolerance. Whole body adiposity was not affected in normal mice, but decreased in drug-treated obese mice. Drug treatment also significantly lowered liver triglyceride levels and reduced the development of hepatic steatosis. We performed hyperinsulinemic-euglycemic clamps on the DIO mice treated with Genz-112638 and showed that insulin-mediated suppression of hepatic glucose production increased significantly compared to the placebo treated mice, indicating a marked improvement in hepatic insulin sensitivity.These results indicate that GSL inhibition in obese mice primarily results in an increase in insulin action in the liver, and suggests that GSLs may have an important role in hepatic insulin resistance in conditions of obesity

    Substrate Reduction Augments the Efficacy of Enzyme Therapy in a Mouse Model of Fabry Disease

    Get PDF
    Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease

    Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy

    Full text link
    Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid βâ glucosidase), with consequent cellular accumulation of glucosylceramide (GLâ 1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GLâ 1 storage in the liver, spleen, and lung of 3â monthâ old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genzâ 112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genzâ 112638 showed the lowest levels of GLâ 1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GLâ 1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genzâ 112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147062/1/jimd0281.pd

    Studies of the action of ceramide-like substances ( d - and l -PDMP) on sphingolipid glycosyltransferases and purified lactosylceramide synthase

    Full text link
    We have studied the effects of D -threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol ( D -PDMP) and its L -enantiomer on glycosphingolipids in cultured normal human kidney proximal tubular cells. We found that D -PDMP exerted a concentration-dependent reduction in the metabolic labelling and cellular levels of glucosylceramide (GlcCer), lactosylceramide (LacCer), and the globo-series glycosphingolipids, GbOse 3 Cer and GbOse 4 Cer. It also directly inhibited the activity of UDP-glucose:ceramide β1 → 4-glucosyltransferase (GlcT-1) and UDP-galactose: GlcCer β1 → 4 galactosyltransferase (GalT-2). In contrast, L -PDMP had opposite effects on the metabolic labelling of GlcCer, LacCer, and GbOse 3 Cer. The levels of GlcCer and LacCer were increased, while the labelling and level of GbOse 4 Cer were strongly reduced. Purified GalT-2 from human kidney was inhibited by D -PDMP and stimulated by L -PDMP. It appears likely that the different glycosphingolipid glycosyltransferases possess similar binding sites for the ceramide moiety, which are blocked by binding to D -PDMP and, in the case of GbOse 4 Cer synthase, by L -PDMP as well. The stimulatory effects of L -PDMP on GlcCer and LacCer synthases may be the result of binding to a modulatory site on the glycosyltransferases; in intact cells, the enzyme-analog complex may afford protection against the normal catabolic inactivation of the enzymes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45706/1/10719_2004_Article_BF00731481.pd
    corecore