169 research outputs found

    Redefining the common insertion site

    Get PDF
    AbstractRetroviral mutagenesis has been used as a powerful tool to discover genes involved in oncogenesis through a technique called Common Insertion Site (CIS) analysis where tumors are induced by proviral integrations and the genomic loci of the proviruses are identified. A fundamental assumption made in this analysis is that multiple proviral insertions in close proximity occurring more frequently than would be predicted randomly provides evidence that the genes near the integrations are involved in the formation of the tumors. We demonstrate here using data derived from MLV integrations not put under selection for tumor induction that CIS analysis as currently defined is often not a sufficient argument for a gene's significance in tumorigenesis

    A 3D searchable database of transgenic zebrafish gal4 and cre lines for functional neuroanatomy studies

    Get PDF
    Citation: Marquart, G. D., Tabor, K. M., Brown, M., Strykowski, J. L., Varshney, G. K., LaFave, M. C., . . . Burgess, H. A. (2015). A 3D searchable database of transgenic zebrafish gal4 and cre lines for functional neuroanatomy studies. Frontiers in Neural Circuits, 9(November), 1-17. doi:10.3389/fncir.2015.00078Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3? untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish. © 2015 Marquart, Tabor, Brown, Strykowski, Varshney, LaFave, Mueller, Burgess, Higashijima and Burgess

    The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15

    Get PDF
    Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formatio

    Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells.</p> <p>Results</p> <p>Through the combined use of transgenic fish, Fluorescence Activated Cell Sorting and microarray analysis we identified a repertoire of key genes expressed in the migrating primordium and in differentiated neuromasts. We validated the specific expression in the primordium of a subset of the identified sequences by quantitative RT-PCR, and by <it>in situ </it>hybridization. We also show that interfering with the function of two genes, <it>f11r </it>and <it>cd9b</it>, defects in primordium migration are induced. Finally, pathway construction revealed functional relationships among the genes enriched in the migrating cell population.</p> <p>Conclusions</p> <p>Our results demonstrate that this is a robust approach to globally analyze tissue-specific expression and we predict that many of the genes identified in this study will show critical functions in developmental events involving collective cell migration and possibly in pathological situations such as tumor metastasis.</p

    Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver

    Get PDF
    The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis

    Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans.</p> <p>Results</p> <p>In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an <it>egfp </it>transgenic stable fish line that trapped <it>tnks1bp1</it>, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(<it>tnks1bp1</it>:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells.</p> <p>Conclusions</p> <p>We present a Tg(<it>tnks1bp1</it>:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.</p

    Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins

    Get PDF
    Knowledge of all binding sites for transcriptional activators and repressors is essential for computationally aided identification of transcriptional networks. The techniques developed for defining the binding sites of transcription factors tend to be cumbersome and not adaptable to high throughput. We refined a versatile yeast strategy to rapidly and efficiently identify genomic targets of DNA-binding proteins. Yeast expressing a transcription factor is mated to yeast containing a library of genomic fragments cloned upstream of the reporter gene URA3. DNA fragments with target-binding sites are identified by growth of yeast clones in media lacking uracil. The experimental approach was validated with the tumor suppressor protein p53 and the forkhead protein FoxI1 using genomic libraries for zebrafish and mouse generated by shotgun cloning of short genomic fragments. Computational analysis of the genomic fragments recapitulated the published consensus-binding site for each protein. Identified fragments were mapped to identify the genomic context of each binding site. Our yeast screening strategy, combined with bioinformatics approaches, will allow both detailed and high-throughput characterization of transcription factors, scalable to the analysis of all putative DNA-binding proteins
    corecore