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Abstract

Retroviral mutagenesis has been used as a powerful tool to discover genes involved in oncogenesis through a technique called Common

Insertion Site (CIS) analysis where tumors are induced by proviral integrations and the genomic loci of the proviruses are identified. A

fundamental assumption made in this analysis is that multiple proviral insertions in close proximity occurring more frequently than would be

predicted randomly provides evidence that the genes near the integrations are involved in the formation of the tumors. We demonstrate here using

data derived from MLV integrations not put under selection for tumor induction that CIS analysis as currently defined is often not a sufficient

argument for a gene’s significance in tumorigenesis.
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For nearly 100 years, it has been known that viruses can be

oncogenic (Ellerman and Bang, 1908; Rous, 1911). One of the

best studied of such viruses is the Murine Leukemia Virus

(MLV), which as its name implies, is responsible for increased

numbers of cancers in the blood lineages (Friend, 1957; Gross,

1957). Recently, this property has been used in combination

with high-throughput genomic approaches as a probe for genes

involved in oncogenesis (Johansson et al., 2004; Kim et al.,

2003; Lund et al., 2002; Mikkers et al., 2002; Shin et al., 2004;

Suzuki et al., 2002). The basic approach is to infect mice with a

wildtype virus that will propagate and, at a high rate, induce

cancers. These tumors are isolated and the proviral integrations

are mapped to genomic locations. Suzuki et al. (2002) were the

first to use this approach on a large scale and they generated a

model for defining what is known as a Common Insertion Site

(CIS). This model compares the mapped locations of the

proviruses in the isolated tumors to randomly generated

integrations from 100,000 Monte Carlo trials. This allowed
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them to determine cutoffs for defining when two or more

integrations in close proximity were significant enough to

assume it didn’t happen by chance (and by extension was

involved in the tumorigenesis). From this analysis, they were

able to develop criteria for CIS significance. Basically the

cutoffs were within 30 kb for 2 integrations, 50 kb for 3

insertions or 100 kb for 4 or more integrations. Of particular

note is that the criteria predicted approximately 16 false

positives in the 2 insertion/30 kb cutoff (using 1200 integra-

tions). Other criteria involved direct human interpretation of

the data, but the fundamental model has been used several

times since the original publication (Johansson et al., 2004;

Kim et al., 2003; Lund et al., 2002; Mikkers et al., 2002; Shin

et al., 2004). Given the lack of knowledge about integration

sites biases for MLV, comparison to randomly generated sets of

integrations was a reasonable assumption.

Recently we mapped 903 MLV integrations in HeLa cells

(Wu et al., 2003). These integrations were not subject to any

form of selection, so it is assumed that this data set does not

have the selective bias of requiring oncogenesis used in CIS

analysis. Analysis of this data set demonstrated that MLV

showed a pattern of integration that was clearly not completely
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Table 1

Comparison of the number of common insertion sites generated an unselected

set of retroviral integrations (Unselected MLV) when compared to those

generated in Suzuki et al as causative for tumorigenesis (CIS) and their random

integration model (Random)

Randoma Unselected MLVb CISc

2 integrations 16.3 59.8 95

3 integrations 0.3 4.0 21

4+ integrations 0.4 4.0 (0) 28 (17)

Particularly in the 2 integration category, there is an enrichment for CIS

occurrences in the unselected integrations when compared to random.
a Number taken from Suzuki et al. (web supplement) based on 100,000

Monte Carlo simulations.
b Based on data from Wu et al. Number is normalized to the Suzuki et al. data

by the formula: (n/903)1200, where n = the number of CIS based on criteria

from Suzuki et al. Number in parentheses is the number of CIS with greater

than 4 integrations.
c From Suzuki et al. Based on 1200 integrations. Number in parentheses is

the number of CIS with greater than 4 integrations.
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random. Approximately 20% of the integrations occurred

within T5 kb of the transcriptional start site (Refseq genes,

Nov. 2002, UCSC human genome Hg13), where in a randomly

generated set that frequency was approximately 4% (P <

0.0001). In terms of the null hypothesis for CIS analysis this is

problematic. The criteria CIS’s are based on a comparison to a

random set, but there is a clear bias in integration sites even

without selection, therefore the null hypothesis for CIS analysis

must now take this non-random behavior into account.

To establish how much of a problem the intrinsic biases of

MLV site selection to CIS analysis are, we remapped the MLV

integrations to the most current build of the human genome

(May 2004, UCSC human genome Hg17). We then applied the

original criteria for CIS analysis, ignoring any CIS determined

by human interpretation (i.e. integrations near a known

oncogene) and then normalized the data to the number of

integrations mapped by Suzuki et al. The data are summarized

in Table 1 (see supplemental data for precise coordinates for all

the CIS). The major feature of this analysis is the relatively

high incidence of CIS sites in the unselected MLV data,

particularly when the criterion is two integrations within 30 kb.
Fig. 1. The frequency of retroviral integrations creating common insertion sites (CIS)

Wu et al., 25% of the integrations were shown to land T5 kb of the transcriptional star

features. The model allows 75% of the integrations to occur randomly and 25% to in

simulation was then tested with all genes as targets, or increasingly smaller numbers

Not until the genes are limited to 5% of all genes are CIS generated at a rate near
Using this definition, nearly two thirds of the 2-integration

CIS’s (59.8 of 95) in Suzuki et al. can be explained by the null

hypothesis of natural retroviral site biases. When looking at 3

integration CIS’s nearly 20% (4 of 21) integrations can again

be explained by the null hypothesis. Once the integration

number in the CIS is over 4, an interesting division occurs.

After normalization in the unselected set of MLV integrations,

there were 4 CIS with 4 integrations and 0 CIS with more than

4 integrations. In Suzuki et al., there were 11 CIS with 4

integrations, 17 CIS with more than 4 integrations, and one CIS

having 55 integrations (Sox4). This would suggest that CIS

with 3 or 4 integrations would still need an additional level of

proof with more than a 20% chance of a false positive, while

integration frequencies above 4 would be extremely rare in the

null hypothesis of no selection.

One argument that has been used to demonstrate the efficacy

of CIS analysis is that many genes identified by the analysis

had already been demonstrated to have a role in oncogenesis

using other methods. We determined the closest gene for each

CIS in the unselected MLV data. We selected only the genes

that have at least one publication associated with them and

searched PubMed for the name of the gene in combination with

the word cancer. Of the 38 genes tested in this fashion, 14

(37%) of them could be demonstrated to be positively

associated with cancer using only this simple and far from

comprehensive criterion (see supplemental data). This small

exercise demonstrates that a pre-established role in cancer is

not sufficient support for the efficacy of the CIS technique. We

previously demonstrated that MLV integrations are biased

towards genes with higher expression levels (Wu et al., 2003)

and the integration mapping was done in the tumor derived

HeLa cells. Thus, it can be argued that MLV is biasing

integrations into locations that are transcriptionally more active

because the genes are related to cancer formation. Therefore, it

may be unclear if the integrations are causative for the tumor or

are targeted to that location because it is a tumor.

We developed a simple model to simulate the integration

biases we had established in our original paper. Instead of

simulating completely random integration, we limited 25%
using various models of integration and repeated 1000 times for each model. In

t site, and 75% were considered equivalent to random based on various genomic

tegrate in a Poisson distribution T5 kb around the transcriptional start site. The

of genes available for integration (to imitate biases for level of gene expression).

that of our experimental data.
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(percentage found in our calculations using the most recent

human genome freeze) of the integrations to a Gaussian

distribution T5 kb around the transcriptional start site of

RefSeq genes. The remaining 75% of the integrations were

allowed to integrate randomly (Fig. 1). We then ran the

simulation 1000 times on the mouse genome (MM5) with 1200

integrations in each simulation to match the number of

integrations from Suzuki et al. This model was indistinguish-

able from random integration in terms of CIS frequency (Fig. 1

red and blue lines). MLV also has a bias towards more highly

expressed genes. As a way to simulate restricted integration

based on the level of gene expression in addition to the

preference for the 5V end of genes, we used the simple model of

considering genes to be either ‘‘on’’ or ‘‘off’’ and only allowed

the 25% category of integrations in genes to ones that were

‘‘on’’. We tested models that used 1/2, 1/5, 1/10, and 1/20 of the

total 18,366 RefSeq genes in the current mouse genome build

MM5 (Fig. 1). It was not until we limited the model to 1/20 of

the RefSeq genes that we were able to demonstrate CIS

frequencies similar to those seen in our data set. The average

number of CIS was approximately 55, with the highest seen

being 69 CIS. We examined our original integration data to

determine how many of the CIS in our unselected viral

integrations had at least one integration within T5 kb of the

transcription start site. Only 15 of the 68 CIS satisfied this

criterion. This was a strong indication that the 5V bias and gene

expression were not the only factors influencing integration

position.

There are two important ramifications that come from our

analyses. The first is that there appears to be additional factors

influencing MLV site selection beyond the previously described

affinity for the 5V ends of genes. Our modeling demonstrates

that such a bias is insufficient to explain the frequency of CIS in

our unselected integrations without an extreme limitation in the

number of genes available for retroviral integration (1/20 of all

genes). As only 15 of the 68 CIS in our data have even one

integration near the 5V end of a gene, there must be other aspects

of the chromatin influencing proviral integration. We do not

currently know what features of chromatin are influencing these

chromosomal integration hotspots. One possible way of

thinking about the observed bias towards the 5V ends of genes
is that the transcriptional start regions of genes have structural

properties (e.g., open chromatin) that are similar to other regions

of the chromatin that also have a propensity for retroviral

integration. Thus, the 25% of integrations that appear to be

biasing towards the 5V ends of genes are merely a subset of the

total global chromatin features that are considered preferential

for MLV integration. Second, the traditional definition of a

common insertion site being statistically significant for tumor-

igenesis can no longer be used and a new definition must take

into account the natural biases of whatever virus is being used.

The data from our unselected integrations generates CIS at a

frequency high enough to create problems with interpretation

based on the traditional definition. Nearly 2/3 of the CIS that

consist of 2 integrations within 30 kb could be accounted for by

the null hypothesis of no selection and 20% of the 3 or 4

integration CIS’s. Only when integration frequencies get above
4 integrations in a CIS (from a data set of around 1200

integrations) can you definitively say that the CIS is highly

unlikely to occur by chance. It is quite likely, even probable that

the CIS of 4 and below are significant in tumorigenesis, but they

would require a much higher level of proof to their significance

than what is supplied by CIS analysis, as they could realistically

have occurred by chance.

In conclusion, CIS analysis is a very powerful tool for

identifying candidate genes involved in oncogenesis as well as

normal development, but the statistical analysis as it is

currently done does not take into account the natural

integration preferences of the retroviruses being used. These

biases have both the natural tendency to generate CIS’s as well

as to integrate into genes that are potentially relevant to cancer.

We propose a much more stringent criteria based on modeling

the unselected integration patterns of whatever retrovirus is

being used, and comparing that unselected model to the

observed integration frequencies in the tumors. For MLV

integrations, CIS of 5 or more integrations carry statistical

significance in a set of 1200, while below 5 integrations have

an increased possibility of occurring by chance. It is not clear

what the implications of this finding are for the potential

increased risk MLV based vectors have when used for gene

therapy. The indications are clear that there are genomic

regions that are preferentially targeted, but why or how those

regions are targeted is still unknown.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found

in the online version at doi:10.1016/j.virol.2005.08.047.
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