84 research outputs found

    Farming and earth observation: sentinel-2 data to estimate within-field wheat grain yield

    Get PDF
    Wheat grain yield (GY) is a crop feature of central importance affecting agricultural, environmental, and socioeconomic sustainability worldwide. Hence, the estimation of within-field variability of GY is pivotal for the agricultural management, especially in the current global change context. In this sense, Earth Observation Systems (EOS) are key technologies that use satellite data to monitor crop yield, which can guide the application of precision farming. Yet, novel research is required to improve the multiplatform integration of data, including data processing, and the application of this discipline in agricultural management. This article provides a novel methodological analysis and assessment of its applications in precision farming. It presents an integration of wheat GY, Global Positioning Systems (GPS), combine harvester data, and EOS Sentinel-2 multispectral bands. Moreover, it compares several indices and machine learning (ML) approaches to map within-field wheat GY. It also analyses the importance of multi-date remote sensing imagery and explores its potential applications in precision agriculture. The study was conducted in Spain, a major European wheat producer. Within-field GY data was obtained from a GPS combine harvester machine for 8 fields over three seasons (2017-2019) and consecutively processed to match Sentinel-2 10 m pixel size. Seven vegetation indices (NDVI, GNDVI, EVI, RVI, TGI, CVI and NGRDI) as well as the biophysical parameter LAI (leaf area index) retrieved with radiative transfer models (RTM) were calculated from Sentinel-2 bands. Sentinel-2 10 m resolution bands alone were also used as variables. Random forest, support vector machine and boosted regressions were used as modelling approaches, and multilinear regression was calculated as baseline. Different combinations of dates of measurement were tested to find the most suitable model feeding data. LAI retrieved from RTM had a slightly improved performance in estimating within-field GY in comparison with vegetation indices or Sentinel-2 bands alone. At validation, the use of multi-date Sentinel-2 data was found to be the most suitable in comparison with single date images. Thus, the model developed with random forest regression (e.g. R-2 = 0.89, and RSME = 0.74 t/ha when using LAI) outperformed support vector machine (R-2 = 0.84 and RSME = 0.92 t/ha), boosting regression (R-2 = 0.85 and RSME = 0.88 t/ha) and multilinear regression (R-2 = 0.69 and RSME = 1.29 t/ha). However, single date images at specific phenological stages (e.g. R-2 = 0.84, and RSME = 0.88 t/ha using random forest at stem elongation) also posed relatively high R-2 and low RMSE, with potential for precision farming management before harvest.A & nbsp;We acknowledge the support of the project PID2019-106650RB-C21 from the Ministerio de Ciencia e Innovacion, Spain. J.S. is a recipient of a FPI doctoral fellowship from the same institution (grant: PRE2020-091907) . J.L.A. acknowledges support from the Institucio Catalana de Recerca i Estudis Avancats (ICREA) , Generalitat de Catalunya, Spain) . S. C.K. is supported by the Ramon y Cajal RYC-2019-027818-I research fellowship from the Ministerio de Ciencia e Innovacion, Spain. We acknowledge the support of Cerealto Siro Group, together with Cristina de Diego and Javier Velasco, technical staff from the company, by providing the wheat yield data. This research was also supported by the COST Action CA17134 SENSECO (Optical synergies for spatiotemporal sensing of scalable ecophysiological traits) funded by COST (European Cooperation in Science and Technology, www.cost.eu)

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discusse

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.This research was funded by the Spanish projects AGL2016-76527-R and IRUEC PCIN-2017-063 from the Ministerio de Economía y Competividad (MINECO, Spain) and by the support of Catalan Institution for Research and Advanced Studies (ICREA, Generalitat de Catalunya, Spain), through the ICREA Academia Program

    Estimating wheat grain yield using Sentinel-2 imagery and exploring topographic features and rainfall effects on wheat performance in Navarre, Spain

    Get PDF
    Reliable methods for estimating wheat grain yield before harvest could help improve farm management and, if applied on a regional level, also help identify spatial factors that influence yield. Regional grain yield can be estimated using conventional methods, but the typical process is complex and labor-intensive. Here we describe the development of a streamlined approach using publicly accessible agricultural data, field-level yield, and remote sensing data from Sentinel-2 satellite to estimate regional wheat grain yield. We validated our method on wheat croplands in Navarre in northern Spain, which features heterogeneous topography and rainfall. First, this study developed stepwise multilinear equations to estimate grain yield based on various vegetation indices, which were measured at various phenological stages in order to determine the optimal timings. Second, the most suitable model was used to estimate grain yield in wheat parcels mapped from Sentinel-2 satellite images. We used a supervised pixel-based random forest classification and the estimates were compared to government-published post-harvest yield statistics. When tested, the model achieved an R2 of 0.83 in predicting grain yield at field level. The wheat parcels were mapped with an accuracy close to 86% for both overall accuracy and compared to offcial statistics. Third, the validated model was used to explore potential relationships of the mapped per-parcel grain yield estimation with topographic features and rainfall by using geographically weighted regressions. Topographic features and rainfall together accounted for an average for 11 to 20% of the observed spatial variation in grain yield in Navarre. These results highlight the ability of our method for estimating wheat grain yield before harvest and determining spatial factors that influence yield at the regional scale

    Women in GRSS Activities at IEEE M2GARSS 2020

    Get PDF
    In this “Women in GRSS” column, we spotlight the activities organized by the IEEE Geoscience and Remote Sensing Society (GRSS) Inspire, Develop, Empower, and Advance (IDEA) Committee during the 2020 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS) held 9–11 March at the Ramada Plaza Tunis, Tunisia

    Visible ozone-like injury, defoliation, and mortality in two Pinus uncinata stands in the Catalan Pyrenees (NE Spain)

    Get PDF
    Ozone concentrations in the Pyrenees have exceeded the thresholds for forest protection since 1994. We surveyed the severity of visible O₃ injuries, crown defoliation, and tree mortality of Pinus uncinata, the dominant species in subalpine forests in this mountain range, along two altitudinal and O₃ gradients in the central Catalan Pyrenees and analysed their relationships with the local environmental conditions. The severity of visible O₃ injuries increased with increasing mean annual [O₃] when summer water availability was high (summer precipitation/potential evapotranspiration above 0.96), whereas higher [O₃] did not produce more visible injuries during drier conditions. Mean crown defoliation and tree mortality ranged between 20.4-66.4 and 0.6-29.6 %, respectively, depending on the site. Both were positively correlated with the accumulated O₃ exposure during the last 5 years and with variables associated with soil-water availability, which favours greater O₃ uptake by increasing stomatal conductance. The results indicate that O₃ contributed to the crown defoliation and tree mortality, although further research is clearly warranted to determine the contributions of the multiple stress factors to crown defoliation and mortality in P. uncinata stands in the Catalan Pyrenees

    Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images

    Get PDF
    Background The number of ears per unit ground area (ear density) is one of the main agronomic yield components in determining grain yield in wheat. A fast evaluation of this attribute may contribute to monitoring the efficiency of crop management practices, to an early prediction of grain yield or as a phenotyping trait in breeding programs. Currently the number of ears is counted manually, which is time consuming. Moreover, there is no single standardized protocol for counting the ears. An automatic ear-counting algorithm is proposed to estimate ear density under field conditions based on zenithal color digital images taken from above the crop in natural light conditions. Field trials were carried out at two sites in Spain during the 2014/2015 crop season on a set of 24 varieties of durum wheat with two growing conditions per site. The algorithm for counting uses three steps: (1) a Laplacian frequency filter chosen to remove low and high frequency elements appearing in an image, (2) a Median filter to reduce high noise still present around the ears and (3) segmentation using Find Maxima to segment local peaks and determine the ear count within the image. Results The results demonstrate high success rate (higher than 90%) between the algorithm counts and the manual (image-based) ear counts, and precision, with a low standard deviation (around 5%). The relationships between algorithm ear counts and grain yield was also significant and greater than the correlation with manual (field-based) ear counts. In this approach, results demonstrate that automatic ear counting performed on data captured around anthesis correlated better with grain yield than with images captured at later stages when the low performance of ear counting at late grain filling stages was associated with the loss of contrast between canopy and ears. Conclusions Developing robust, low-cost and efficient field methods to assess wheat ear density, as a major agronomic component of yield, is highly relevant for phenotyping efforts towards increases in grain yield. Although the phenological stage of measurements is important, the robust image analysis algorithm presented here appears to be amenable from aerial or other automated platforms

    Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe

    Get PDF
    n the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increasefood production while keeping pace with continued population growth. Conservation agriculture(CA) has been proposed to enhance soil health and productivity to respond to this situation.Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes andmanagement practices for CA conditions has been explored using remote sensing tools. They may playa fundamental role towards overcoming the traditional limitations of data collection and processing inlarge scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) andmultispectral indexes were evaluated for assessing maize performance under conventional ploughing(CP) and CA practices. Eight hybrids under different planting densities and tillage practices weretested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmannedaerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution thatdid not have any negative impact on the performance of the indexes. Most of the calculated indexes(Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affectedby tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-imagesrelated to canopy greenness performed better at assessing yield differences, potentially due to thegreater resolution of the RGB compared with the multispectral data, although this performance wasmore precise for CP than CA.The correlations of the multispectral indexes with yield were improvedby applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels withvegetation. The results of this study highlight the applicability of remote sensing approaches basedon RGB images to the assessment of crop performance and hybrid choice

    Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat

    Get PDF
    Bread wheat (Triticum aestivum L) is one of the three main staple crops worldwide contributing 20% calories in the human diet. Drought stress is the main factor limiting yields and threatening food security, with climate change resulting in more frequent and intense drought. Developing drought-tolerant wheat cultivars is a promising way forward. The use of holistic approaches that include high-throughput phenotyping and genetic markers in selection could help in accelerating genetic gains. Fifty advanced breeding lines were selected from the CIMMYT Turkey winter wheat breeding program and studied under irrigated and semiarid conditions in two years. High-throughput phenotyping was done for wheat crown root traits and canopy senescence dynamics using vegetation indices (green area using RGB images and Normalized Difference Vegetation Index using spectral reflectance). In addition, genotyping by KASP markers for adaptability genes was done. Overall, under semiarid conditions yield reduced by 3.09 t ha-1 (-46.8%) compared to irrigated conditions. Genotypes responded differently under drought stress and genotypes 39 (VORONA/HD24- 12//GUN/7/VEE#8//. . ./8/ALTAY), 18 (BiII98) and 29 (NIKIFOR//KROSHKA) were the most drought tolerant. Root traits including shallow nodal root angle under irrigated conditions and root number per shoot under semiarid conditions were correlated with increased grain yield. RGB based vegetation index measuring canopy green area at anthesis was better correlated with GY than NDVI was with GY under drought. The markers for five established functional genes (PRR73.A1 -flowering time, TEF-7A -grain size and weight, TaCwi.4A - yield under drought, Dreb1- drought tolerance, and ISBW11.GY.QTL.CANDIDATE- grain yield) were associated with different drought-tolerance traits in this experiment. We conclude that-genotypes 39, 18 and 29 could be used for drought tolerance breeding. The trait combinations of canopy green area at anthesis, and root number per shoot along with key drought adaptability makers (TaCwi.4A and Dreb1) could be used in screening drought tolerance wheat breeding lines

    Dataset of above and below ground traits assessed in Durum wheat cultivars grown under Mediterranean environments differing in water and temperature conditions

    Get PDF
    Ideotypic characteristics of durum wheat associated with higher yield under different water and temperature regimes were studied under Mediterranean conditions. The focus of this paper is to provide raw and supplemental data from the research article entitled "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions" [1], which aims to define specific durum wheat ideotypes according to their responses to different agronomic conditions. In this context, six modern (i.e. post green revolution) genotypes with contrasting yield performance (i.e. high vs low yield) were grown during two consecutive years under different treatments: (i) winter planting under support-irrigation conditions, (ii) winter planting under rainfed conditions, (iii) late planting under support-irrigation. Trials were conducted at the INIA station of Colmenar de Oreja (Madrid). Different traits were assessed to inform about water status (canopy temperature at anthesis and stable carbon isotope composition (delta C-13) of the flag leaf and mature grains), root performance (root traits and the oxygen isotope composition (delta O-18) in the stem base water), phenology (days from sowing to heading), nitrogen status/photosynthetic capacity (nitrogen content and stable isotope composition (delta N-15) of the flag leaf and mature grain together with the pigment contents and the nitrogen balance index (NBI) of the flag leaf), crop growth (plant height (PH) and the normalized difference vegetation index (NDVI) at anthesis), grain yield and agronomic yield components. For most of the parameters assessed, data analysis demonstrated significant differences among genotypes within each treatment. The level of significance was determined using the Tukey-b test on independent samples, and ideotypes were modelled from the results of principle component analysis. The present data shed light on traits that help to define specific ideotype characteristics that confer genotypic adaptation to a wide range of agronomic conditions produced by variations in planting date, water conditions and seasonThis study was supported by the Spanish projects PID2019-106650RB-C21 and PCIN-2017-063, from the Ministerio de Ciencia e Innovacion, Spain. FZR is a recipient of a research grant (FI-AGAUR) sponsored by the Agency for Management of University and Research Grants (AGAUR) in collaboration with the University of Barcelona (UB) . We thank the personnel from the exper-imental station of INIA at Colmenar de Oreja (Aranjuez) for their continued support of our re-search. We thank the members of the Integrative Crop Ecophysiology Group for their assistance during the data assessment of the study. We extend our thanks to The Water Research Institute (IdRA) for their financial support to cover laboratory analyses. JLA acknowledges support from ICREA Academia, Generalitat de Catalunya, Spain. We thank Dr. J.Voltas from the University of Lleida, Spain, for his support with the delta 18O water analyses
    corecore