1,905 research outputs found

    Infection of a yellow baboon with simian immunodeficiency virus from African green monkeys:evidence for cross-species transmission in the wild

    Get PDF
    Many African primates are known to be naturally infected with simian immunodeficiency viruses (SIVs), but only a fraction of these viruses has been molecularly characterized. One primate species for which only serological evidence of SIV infection has been reported is the yellow baboon (Papio hamadryas cynocephalus). Two wild-living baboons with strong SIVAGM seroreactivity were previously identified in a Tanzanian national park where baboons and African green monkeys shared the same habitat (T. Kodama, D. P. Silva, M. D. Daniel, J. E. Phillips-Conroy, C. J. Jolly, J. Rogers, and R. C. Desrosiers, AIDS Res. Hum. Retroviruses 5:337-343, 1989). To determine the genetic identity of the viruses infecting these animals, we used PCR to examine SIV sequences directly in uncultured leukocyte DNA. Targeting two different, nonoverlapping genomic regions, we amplified and sequenced a 673-bp gag gene fragment and a 908-bp env gene fragment from one of the two baboons. Phylo-genetic analyses revealed that this baboon was infected with an SIVAGM strain of the vervet subtype. These results provide the first direct evidence for simian-to-simian cross-species transmission of SIV in the wild

    An isolate of human immunodeficiency virus type 1 originally classified as subtype I represents a complex mosaic comprising three different group M subtypes (A, G, and I)

    Get PDF
    Full-length reference clones and sequences are currently available for eight human immunodeficiency virus type 1 (HIV-1) group M subtypes (A through H), but none have been reported for subtypes I and J, which have only been identified in a few individuals. Phylogenetic information for subtype I, in particular, is limited since only about 400 bp of env gene sequences have been determined for just two epidemiologically linked viruses infecting a couple who were heterosexual intravenous drug users from Cyprus. To characterize subtype I in greater detail, we employed long-range PCR to clone a full-length provirus (94CY032.3) from an isolate obtained from one of the individuals originally reported to be infected with this subtype. Phylogenetic analysis of C2-V3 env gene sequences confirmed that 94CY032.3 was closely related to sequences previously classified as subtype I. However, analysis of the remainder of its genome revealed various regions in which 94CY032.3 was significantly clustered with either subtype A or subtype G. Only sequences located in vpr and nef, as well as the middle portions of pol and env, formed independent lineages roughly equidistant from all other known subtypes. Since these latter regions most likely have a common origin, we classify them all as subtype I. These results thus indicate that the originally reported prototypic subtype I isolate 94CY032 represents a triple recombinant (A/G/I) with at least 11 points of recombination crossover. We also screened HIV-1 recombinants with regions of uncertain subtype assignment for the presence of subtype I sequences. This analysis revealed that two of the earliest mosaics from Africa, Z321B (A/G/?) and MAL (A/D/?), contain short segments of sequence which clustered closely with the subtype I domains of 94CY032.3. Since Z321 was isolated in 1976, subtype I as well as subtypes A and G must have existed in Central Africa prior to that date... (D'après résumé d'auteur

    Elucidation of Hepatitis C Virus Transmission and Early Diversification by Single Genome Sequencing

    Get PDF
    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures

    Predicting where a radiation will occur: Acoustic and molecular surveys reveal overlooked diversity in Indian Ocean Island crickets (Mogoplistinae: Ornebius)

    Get PDF
    Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands. (Résumé d'auteur

    Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8⁺ T cells in HIV-1 infection

    Get PDF
    Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8⁺ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I–bound peptides on HIV-infected cells. We demonstrate that HIV-1–derived spliced peptides comprise a relatively minor component of the HLA-I–bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8⁺ T cell responses relatively infrequently during infection, CD8⁺ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection
    corecore