137 research outputs found

    Patent applications for using DNA technologies to authenticate medicinal herbal material

    Get PDF
    Herbal medicines are used in many countries for maintaining health and treating diseases. Their efficacy depends on the use of the correct materials, and life-threatening poisoning may occur if toxic adulterants or substitutes are administered instead. Identification of a medicinal material at the DNA level provides an objective and powerful tool for quality control. Extraction of high-quality DNA is the first crucial step in DNA authentication, followed by a battery of DNA techniques including whole genome fingerprinting, DNA sequencing and DNA microarray to establish the identity of the material. New or improved technologies have been developed and valuable data have been collected and compiled for DNA authentication. Some of these technologies and data are patentable. This article provides an overview of some recent patents that cover the extraction of DNA from medicinal materials, the amplification of DNA using improved reaction conditions, the generation of DNA sequences and fingerprints, and the development of high-throughput authentication methods. It also briefly explains why these patents have been granted

    Spectroscopy 16 (2002) 1-13 1 IOS Press Protein dynamics measurements by 3D HNCO based NMR experiments

    Get PDF
    Abstract. Protein dynamics can be characterized by relaxation parameters obtained from traditional 2D HSQC based NMR experiments. This approach is hampered when applied to proteins with severe spectral overlap. In the present work, several novel 3D TROSY-HNCO and 3D HSQC-HNCO based NMR experiments were applied for measuring 15 N T1, T2 and 1 H-15 N NOE with improved spectral dispersion by introducing a third 13 C dimension. The number of phase cycling steps in these 3D pulse sequences was restricted to two in order to minimize the time required to perform the dynamics measurements. For a uniformly 100% 15 N, 100% 13 C, and 70% 2 H-labelled trichosanthin sample (∼27 kDa, 1.0 mM) at 30 • C, the sensitivity of 3D TROSY-HNCO based experiment was, on the average, enhanced by 72% compared to that of 3D HSQC-HNCO based experiments. However, the 3D HSQC-HNCO based experiments should be more effective for non-deuterated proteins with smaller molecular weights and seriously overlapped 2D HSQC spectra. Results from the 3D TROSY-HNCO and 3D HSQC-HNCO based experiments were in good agreement with those obtained from traditional 2D HSQC based experiments

    An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database.</p> <p>Description</p> <p>We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD) for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at <url>http://www.cuhk.edu.hk/icm/mmdbd.htm</url>.</p> <p>Conclusions</p> <p>This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.</p

    Structure-function study of maize ribosome-inactivating protein: implications for the internal inactivation region and the sole glutamate in the active site

    Get PDF
    Maize ribosome-inactivating protein is classified as a class III or an atypical RNA N-glycosidase. It is synthesized as an inactive precursor with a 25-amino acid internal inactivation region, which is removed in the active form. As the first structural example of this class of proteins, crystals of the precursor and the active form were diffracted to 2.4 and 2.5 Å, respectively. The two proteins are similar, with main chain root mean square deviation (RMSD) of 0.519. In the precursor, the inactivation region is found on the protein surface and consists of a flexible loop followed by a long α-helix. This region diminished both the interaction with ribosome and cytotoxicity, but not cellular uptake. Like bacterial ribosome-inactivating proteins, maize ribosome-inactivating protein does not have a back-up glutamate in the active site, which helps the protein to retain some activity if the catalytic glutamate is mutated. The structure reveals that the active site is too small to accommodate two glutamate residues. Our structure suggests that maize ribosome-inactivating protein may represent an intermediate product in the evolution of ribosome-inactivating proteins. © 2007 The Author(s).published_or_final_versio

    The C-terminal fragment of the ribosomal P protein complexed to trichosanthin reveals the interaction between the ribosome-inactivating protein and the ribosome

    Get PDF
    Ribosome-inactivating proteins (RIPs) inhibit protein synthesis by enzymatically depurinating a specific adenine residue at the sarcin-ricin loop of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation centre of the ribosome. Here, we present the 2.2 Å crystal structure of trichosanthin (TCS) complexed to the peptide SDDDMGFGLFD, which corresponds to the conserved C-terminal elongation factor binding domain of the ribosomal P protein. The N-terminal region of this peptide interacts with Lys173, Arg174 and Lys177 in TCS, while the C-terminal region is inserted into a hydrophobic pocket. The interaction with the P protein contributes to the ribosome-inactivating activity of TCS. This 11-mer C-terminal P peptide can be docked with selected important plant and bacterial RIPs, indicating that a similar interaction may also occur with other RIPs

    Population genomic analyses of protected incense trees Aquilaria sinensis reveal the existence of genetically distinct subpopulations

    Get PDF
    The incense tree Aquilaria sinensis (Thymelaeaceae) can produce agarwood with commercial values and is now under threat from illegal exploitation in Hong Kong, impairing the local population and biodiversity. Together with other species of Aquilaria, it is listed in the CITES Appendix II, which strictly regulates its international trade. To understand the population structure of A. sinensis and to make relevant conservation measures, we have sequenced 346 individuals collected in Hong Kong and southern mainland China. Population genomic analyses including principal component analysis, neighbor-joining tree construction, ADMIXTURE, and hierarchical pairwise-FST analyses suggested that genetically distinct populations are contained in certain areas. Genomic scan analyses further detected single-nucleotide polymorphism (SNP) outliers related to plant defense, including the CYP71BE gene cluster. In addition to the population analyses, we have developed a modified hexadecyltrimethyl-ammonium bromide (CTAB) DNA extraction protocol for obtaining DNA from agarwood samples in this study, and resequencing of DNA extracted from two agarwood samples using this method allows us to successfully map to the sample corresponding localities in the phylogenetic tree. To sum up, this study suggested that there is a genetically distinct subpopulation of incense tree in Hong Kong that would require special conservation measures and established a foundation for future conservation measures

    A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells

    Get PDF
    Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the α-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease

    Solution structure of the dimerization domain of ribosomal protein P2 provides insights for the structural organization of eukaryotic stalk

    Get PDF
    The lateral stalk of ribosome is responsible for kingdom-specific binding of translation factors and activation of GTP hydrolysis that drives protein synthesis. In eukaryotes, the stalk is composed of acidic ribosomal proteins P0, P1 and P2 that constitute a pentameric P-complex in 1: 2: 2 ratio. We have determined the solution structure of the N-terminal dimerization domain of human P2 (NTD-P2), which provides insights into the structural organization of the eukaryotic stalk. Our structure revealed that eukaryotic stalk protein P2 forms a symmetric homodimer in solution, and is structurally distinct from the bacterial counterpart L12 homodimer. The two subunits of NTD-P2 form extensive hydrophobic interactions in the dimeric interface that buries 2400 Å2 of solvent accessible surface area. We have showed that P1 can dissociate P2 homodimer spontaneously to form a more stable P1/P2 1 : 1 heterodimer. By homology modelling, we identified three exposed polar residues on helix-3 of P2 are substituted by conserved hydrophobic residues in P1. Confirmed by mutagenesis, we showed that these residues on helix-3 of P1 are not involved in the dimerization of P1/P2, but instead play a vital role in anchoring P1/P2 heterodimer to P0. Based on our results, models of the eukaryotic stalk complex were proposed

    Solution structure of the dimerization domain of ribosomal protein P2 provides insights for the structural organization of eukaryotic stalk

    Get PDF
    The lateral stalk of ribosome is responsible for kingdom-specific binding of translation factors and activation of GTP hydrolysis that drives protein synthesis. In eukaryotes, the stalk is composed of acidic ribosomal proteins P0, P1 and P2 that constitute a pentameric P-complex in 1: 2: 2 ratio. We have determined the solution structure of the N-terminal dimerization domain of human P2 (NTD-P2), which provides insights into the structural organization of the eukaryotic stalk. Our structure revealed that eukaryotic stalk protein P2 forms a symmetric homodimer in solution, and is structurally distinct from the bacterial counterpart L12 homodimer. The two subunits of NTD-P2 form extensive hydrophobic interactions in the dimeric interface that buries 2400 Å2 of solvent accessible surface area. We have showed that P1 can dissociate P2 homodimer spontaneously to form a more stable P1/P2 1 : 1 heterodimer. By homology modelling, we identified three exposed polar residues on helix-3 of P2 are substituted by conserved hydrophobic residues in P1. Confirmed by mutagenesis, we showed that these residues on helix-3 of P1 are not involved in the dimerization of P1/P2, but instead play a vital role in anchoring P1/P2 heterodimer to P0. Based on our results, models of the eukaryotic stalk complex were proposed

    Solution structure of the dimerization domain of the eukaryotic stalk P1/P2 complex reveals the structural organization of eukaryotic stalk complex

    Get PDF
    The lateral ribosomal stalk is responsible for the kingdom-specific binding of translation factors and activation of GTP hydrolysis during protein synthesis. The eukaryotic stalk is composed of three acidic ribosomal proteins P0, P1 and P2. P0 binds two copies of P1/P2 hetero-dimers to form a pentameric P-complex. The structure of the eukaryotic stalk is currently not known. To provide a better understanding on the structural organization of eukaryotic stalk, we have determined the solution structure of the N-terminal dimerization domain (NTD) of P1/P2 hetero-dimer. Helix-1, -2 and -4 from each of the NTD-P1 and NTD-P2 form the dimeric interface that buries 2200 A2 of solvent accessible surface area. In contrast to the symmetric P2 homo-dimer, P1/P2 hetero-dimer is asymmetric. Three conserved hydrophobic residues on the surface of NTD-P1 are replaced by charged residues in NTD-P2. Moreover, NTD-P1 has an extra turn in helix-1, which forms extensive intermolecular interactions with helix-1 and -4 of NTD-P2. Truncation of this extra turn of P1 abolished the formation of P1/P2 hetero-dimer. Systematic truncation studies suggest that P0 contains two spine-helices that each binds one copy of P1/P2 hetero-dimer. Modeling studies suggest that a large hydrophobic cavity, which can accommodate the loop between the spine-helices of P0, can be found on NTD-P1 but not on NTD-P2 when the helix-4 adopts an ‘open’ conformation. Based on the asymmetric properties of NTD-P1/NTD-P2, a structural model of the eukaryotic P-complex with P2/P1:P1/P2 topology is proposed
    corecore