278 research outputs found

    A rusty record of weathering and groundwater movement in the hyperarid Central Andes

    Get PDF
    The Atacama Desert, on the western margin of the Central Andes, hosts some of the world's largest porphyry copper deposits (PCDs). Despite a hyperarid climate, many of these PCDs have undergone secondary ā€œsupergeneā€ enrichment, whereby copper has been concentrated via groundwater-driven leaching and reprecipitation, yielding supergene profiles containing valuable records of weathering and landscape evolution. We combine hematite (U-Th-Sm)/He geochronology and oxygen isotope analysis to compare the weathering histories of two Andean PCDs and test the relative importance of climate and tectonics in controlling both enrichment and water table movement. At Cerro Colorado, in the Precordillera, hematite precipitation records prolonged weathering from āˆ¼31 to āˆ¼2 Ma, tracking water table descent following aridity-induced canyon incision from the late Miocene onward. By contrast, hematite at Spence, within the Central Depression, is mostly younger than āˆ¼10.5 Ma, suggesting exhumation ended much later. A heavy oxygen isotopic signature for Spence hematite suggests that upwelling formation water has been an important source of groundwater, accounting for a high modern water table despite persistent hyperaridity, whereas isotopically light hematite at Cerro Colorado formed in the presence of meteoric water. Compared with published paleo-environmental and sedimentological records, our data show that weathering can persist beneath appreciable post-exhumation cover, under hyperarid conditions unconducive to enrichment. The susceptibility of each deposit to aridity-induced water table descent, canyon incision and deep weathering has been controlled by recharge characteristics and morphotectonic setting. Erosional exhumation, rather than aridity-induced water table decay, appears to be more important for the development of supergene enrichment

    An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness

    Get PDF
    The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substratesā€™ mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells ā€˜feelā€™ substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine

    Exploring the Use of Cost-Benefit Analysis to Compare Pharmaceutical Treatments for Menorrhagia

    Get PDF
    Background: The extra-welfarist theoretical framework tends to focus on health-related quality of life, whilst the welfarist framework captures a wider notion of well-being. EQ-5D and SF-6D are commonly used to value outcomes in chronic conditions with episodic symptoms, such as heavy menstrual bleeding (clinically termed menorrhagia). Because of their narrow-health focus and the conditionā€™s periodic nature these measures may be unsuitable. A viable alternative measure is willingness to pay (WTP) from the welfarist framework. Objective: We explore the use of WTP in a preliminary cost-benefit analysis comparing pharmaceutical treatments for menorrhagia. Methods: A cost-benefit analysis was carried out based on an outcome of WTP. The analysis is based in the UK primary care setting over a 24-month time period, with a partial societal perspective. Ninety-nine women completed a WTP exercise from the ex-ante (pre-treatment/condition) perspective. Maximum average WTP values were elicited for two pharmaceutical treatments, levonorgestrel-releasing intrauterine system (LNG-IUS) and oral treatment. Cost data were offset against WTP and the net present value derived for treatment. Qualitative information explaining the WTP values was also collected. Results: Oral treatment was indicated to be the most cost-beneficial intervention costing Ā£107 less than LNG-IUS and generating Ā£7 more benefits. The mean incremental net present value for oral treatment compared with LNG-IUS was Ā£113. The use of the WTP approach was acceptable as very few protests and non-responses were observed. Conclusion: The preliminary cost-benefit analysis results recommend oral treatment as the first-line treatment for menorrhagia. The WTP approach is a feasible alternative to the conventional EQ-5D/SF-6D approaches and offers advantages by capturing benefits beyond health, which is particularly relevant in menorrhagia

    Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses

    Get PDF
    Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively

    Genome-scale resources for Thermoanaerobacterium saccharolyticum

    Get PDF
    Background Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation. Results Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results. Conclusion These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be useful on a comparative basis for development of other lignocellulose degrading microbes, such as Clostridium thermocellum. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0159-x) contains supplementary material, which is available to authorized users
    • ā€¦
    corecore