516 research outputs found

    He 2-104: A link between symbiotic stars and planetary nebulae

    Get PDF
    Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium

    Deformation conditions during syn-convergent extension along the Cordillera Blanca shear zone, Peru

    Get PDF
    Strain localization across the brittle-ductile transition is a fundamental process in accommodating tectonic movement in the mid-crust. The tectonically active Cordillera Blanca shear zone (CBSZ), a ~200-km-long normal-sense shear zone situated within the footwall of a discrete syn-convergent extensional fault in the Peruvian Andes, is an excellent field laboratory to explore this transition. Field and microscopic observations indicate consistent top-down-to-the-southwest sense of shear and a sequence of tectonites ranging from undeformed granodiorite through mylonite and ultimately fault breccia along the detachment. Using microstructural analysis, two-feldspar and Ti-in-quartz (TitaniQ) thermometry, recrystallized quartz paleopiezometry, and analysis of quartz crystallographic preferred orientations, we evaluate the deformation conditions and mechanisms in quartz and feldspar across the CBSZ. Deformation temperatures derived from asymmetric strain-induced myrmekite in a subset of tectonite samples are 410 ± 30 to 470 ± 36 °C, consistent with TitaniQ temperatures of 450 ± 60 to 490 ± 33 °C and temperatures \u3e400 °C estimated from microstructural criteria. Brittle fabrics overprint ductile fabrics within ~150 m of the detachment that indicate that deformation continued to lower-temperature (~280–400 °C) and/or higher-strain-rate conditions prior to the onset of pervasive brittle deformation. Initial deformation occurred via high-temperature fracturing and dissolution-precipitation in feldspar. Continued subsolidus deformation resulted in either layering of mylonites into monophase quartz and fine-grained polyphase domains oriented subparallel to macroscopic foliation or the interconnection of recrystallized quartz networks oriented obliquely to macroscopic foliation. The transition to quartz-controlled rheology occurred at temperatures near ~500 °C and at a differential stress of ~16.5 MPa. Deformation within the CBSZ occurred predominantly above ~400 °C and at stresses up to ~71.4 MPa prior to the onset of brittle deformation

    Deformation Conditions During Syn-Convergent Extension Along the Cordillera Blanca Shear Zone, Peru

    Get PDF
    Strain localization across the brittle-ductile transition is a fundamental process in accommodating tectonic movement in the mid-crust. The tectonically active Cordillera Blanca shear zone (CBSZ), a ∼200-km-long normal-sense shear zone situated within the footwall of a discrete syn-convergent extensional fault in the Peruvian Andes, is an excellent field laboratory to explore this transition. Field and microscopic observations indicate consistent top-down-to-the-southwest sense of shear and a sequence of tectonites ranging from undeformed granodiorite through mylonite and ultimately fault breccia along the detachment. Using microstructural analysis, two-feldspar and Ti-in-quartz (TitaniQ) thermometry, recrystallized quartz paleopiezometry, and analysis of quartz crystallographic preferred orientations, we evaluate the deformation conditions and mechanisms in quartz and feldspar across the CBSZ. Deformation temperatures derived from asymmetric strain-induced myrmekite in a subset of tectonite samples are 410 ± 30 to 470 ± 36 °C, consistent with TitaniQ temperatures of 450 ± 60 to 490 ± 33 °C and temperatures \u3e400 °C estimated from microstructural criteria. Brittle fabrics overprint ductile fabrics within ∼150 m of the detachment that indicate that deformation continued to lower-temperature (∼280–400 °C) and/or higher-strain-rate conditions prior to the onset of pervasive brittle deformation. Initial deformation occurred via high-temperature fracturing and dissolution-precipitation in feldspar. Continued subsolidus deformation resulted in either layering of mylonites into monophase quartz and fine-grained polyphase domains oriented subparallel to macroscopic foliation or the interconnection of recrystallized quartz networks oriented obliquely to macroscopic foliation. The transition to quartz-controlled rheology occurred at temperatures near ∼500 °C and at a differential stress of ∼16.5 MPa. Deformation within the CBSZ occurred predominantly above ∼400 °C and at stresses up to ∼71.4 MPa prior to the onset of brittle deformation

    Halogen Bonding with Phosphine: Evidence for Mulliken Inner Complexes and the Importance of Relaxation Energy

    Get PDF
    Intermolecular halogen bonding in complexes of phosphine and dihalogens has been theoretically investigated using explicitly correlated coupled cluster methods and symmetry adapted perturbation theory. The complexes H3P· · · ClF, H3P· · · BrF and H3P· · ·IF are demonstrated to possess unusually strong interactions that are accompanied by an increase in the induction component of the interaction energy and significant elongation of the X–Y halogen distance on complex formation. The combination of these factors is indicative of Mulliken inner complexes and criteria for identifying this classification are further developed. The importance of choosing an electronic structure method that describes both dispersion and longer range interactions is demonstrated, along with the need to account for the change in geometry on complexation formation via relaxation energy and overall stabilisation energies

    Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Get PDF
    Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics. Location: North America. Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns of genetic diversity and structuring using 8 nuclear microsatellite loci in 794 individuals from 30 sampling sites. Results: Two major genetic clusters were identified across the range: a southwestern cluster and a northern cluster. The south-western cluster, which included two subclusters, was bounded approximately by the Continental Divide to the east and the southern extent of the ice sheet at the Last Glacial Maximum to the north. Subclusters were not detected in the northern cluster, despite its continent-wide distribution. Genetic distance was significantly correlated with geographical distance in the south-western but not the northern cluster, and allelic richness was significantly lower in south-western sampling sites compared with northern sampling sites. Population structuring was low overall, but elevated in the south-western cluster. Main conclusions: Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene and reunited following glacial retreat, similar to patterns found in other forest tree species in the western USA. In aspen, populations in the southwestern portion of the species range are thought to be at particularly high risk of mortality with climate change. Our findings suggest that these same populations may be disproportionately valuable in terms of both evolutionary potential and conservation value

    Discovery of Dust Emission Activity Emanating from Main-belt Asteroid 2015 FW412

    Full text link
    We present the discovery of activity emanating from main-belt asteroid 2015 FW412, a finding stemming from the Citizen Science project Active Asteroids, a NASA Partner program. We identified a pronounced tail originating from 2015 FW412 and oriented in the anti-motion direction in archival Blanco 4-m (Cerro Tololo Inter-American Observatory, Chile) Dark Energy Camera (DECam) images from UT 2015 April 13, 18, 19, 21 and 22. Activity occurred near perihelion, consistent with the main-belt comets (MBCs), an active asteroid subset known for sublimation-driven activity in the main asteroid belt; thus 2015 FW412 is a candidate MBC. We did not detect activity on UT 2021 December 12 using the Inamori-Magellan Areal Camera and Spectrograph (IMACS) on the 6.5 m Baade telescope, when 2015 FW412 was near aphelion.Comment: 4 pages, 1 figur

    Time in Nature Associated with Decreased Fatigue in UK Truck Drivers

    Get PDF
    Funding: The data presented in this paper were collected as part of the ‘Structured Health Interven- tion For Truckers (SHIFT)’ randomised controlled trial. This research was funded by the National Institute for Health Research (NIHR) Public Health Research Programme (reference: NIHR PHR 15/190/42). Funding Acquisition, S.A.C., J.A.K., V.V-M. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. Acknowledgments: SAC: JAK, AS and NJP are supported by the NIHR Leicester Biomedical Re- search Centre—Lifestyle theme. AG has received funding for their PhD Studentship from the Colt Foundation (reference: JD/618).Peer reviewedPublisher PD

    Ethnic differences in Glycaemic control in people with type 2 diabetes mellitus living in Scotland

    Get PDF
    Background and Aims: Previous studies have investigated the association between ethnicity and processes of care and intermediate outcomes of diabetes, but there are limited population-based studies available. The aim of this study was to use population-based data to investigate the relationships between ethnicity and glycaemic control in men and women with diabetes mellitus living in Scotland.<p></p> Methods: We used a 2008 extract from the population-based national electronic diabetes database of Scotland. The association between ethnicity with mean glycaemic control in type 2 diabetes mellitus was examined in a retrospective cohort study, including adjustment for a number of variables including age, sex, socioeconomic status, body mass index (BMI), prescribed treatment and duration of diabetes.<p></p> Results: Complete data for analyses were available for 56,333 White Scottish adults, 2,535 Pakistanis, 857 Indians, 427 Chinese and 223 African-Caribbeans. All other ethnic groups had significantly (p<0.05) greater proportions of people with suboptimal glycaemic control (HbA1c >58 mmol/mol, 7.5%) compared to the White Scottish group, despite generally younger mean age and lower BMI. Fully adjusted odds ratios for suboptimal glycaemic control were significantly higher among Pakistanis and Indians (1.85, 95% CI: 1.68–2.04, and 1.62,95% CI: 1.38–1.89) respectively.<p></p> Conclusions: Pakistanis and Indians with type 2 diabetes mellitus were more likely to have suboptimal glycaemic control than the white Scottish population. Further research on health services and self-management are needed to understand the association between ethnicity and glycaemic control to address ethnic disparities in glycaemic control.<p></p&gt

    Hotspot relaxation dynamics in a current-carrying superconductor

    Get PDF
    We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors. © 2016 American Physical Society

    Quasiparticle recombination in hotspots in superconducting current-carrying nanowires

    Get PDF
    We describe a kinetic model of recombination of nonequilibrium quasiparticles generated by single photon absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self-recombination in relaxing hotspots dominates diffusion expansion effects and explains the observed strong bias current, wavelength, and temperature dependencies of hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors
    corecore