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TEXT S1. 

Titanium in quartz produces a detectable cathodoluminescence (CL) signal, which 

can aid in evaluating possible mineral zonation or multiple generations of quartz growth. 

Quartz luminescence over a broad spectrum can be due to a range of impurities, such as 

lattice defects or incorporation of trace elements. Titanium luminesces at 330-340 nm 

wavelengths and up to 400 nm wavelengths (blue-violet), with greater amounts of Ti 

producing a stronger signal. Filtering CL images to specific wavelengths can allow for 

evaluation of Ti zoning or overgrowths (Spear and Wark, 2009; Gotze et al., 2012). This 

is important in distinguishing between multiple potential generations of quartz, as even 

minor variations in Ti concentration must be evaluated texturally to determine which 

concentrations are representative of different deformation time stamps. CL images were 

captured using the CITL CL8200 Mk5-2 Optical Cathodoluminescence System, mounted 

on a Nikon Eclipse E400 microscope and attached to an Optronics camera, at University 

of Tennessee-Knoxville. Operating conditions were 256 µA current and 20 kV electron 

beam. Images were filtered for blue wavelength through manually variable exposures, 

where blue exposures were set to between 6 minutes, 49 seconds and 21 minutes, 59 

seconds. Images were captured under Turbo mode via Magnafire software and CCD 

camera such that locations imaged with CL were not exposed for longer than ~8 minutes, 

thus minimizing effects of shifting emission spectra with time (Götze, 2002).  

Spot analyses for Titanium-in-Quartz (TitaniQ) thermometry were conducted 

using the EMPA at UTK. Two to three spectrometers (PET, LLIF, LLIF or PET, LLIF) 

were used to count Ti Kα X-rays. Peak count times were 960 s (alternating between 192 s 

on peak, 96 s on high and low backgrounds), yielding a detection limit of 11 ppm. 

Accuracy of measurements was evaluated against synthetic quartz crystals containing 

known Ti concentrations and against Herkimer quartz as a blank.  

 

 

TEXT S2.  

Raw data was processed in Channel 5 to remove wild spikes (individual pixels 

with orientations dissimilar to all 8 surrounding neighbors), to adjust misindexed pixel 

orientations to 5 nearest neighbors, and to remove systematic misindexing of grains at 

orientations 60 (±5) to the {0001} (or c) axis to account for quartz pseudosymmetry. 

Subsequent data processing, pole figure construction, and calculations of fabric strength 

were completed using the MTEX toolbox for MATLAB (Hielscher and Schaeben, 2008; 

Mainprice et al., 2015). 

Grain size is calculated as the diameter of an equivalent-area circular grain. The 

root mean square of grain size distributions generated from Channel 5 HKL Tango 

software is used in paleopiezometry calculations. Grains outside of the 95% threshold of 

grain size distributions were checked against grain size maps to evaluate if they were 

Cameron Hughes
Cross-Out

Cameron Hughes
Inserted Text
EPMA



 

 

3 

 

relict (outlier of largest grains) or false grains (outlier of smallest grains) and removed 

from the final distribution used for paleopiezometry. 

TEXT S3. 

Geochemical modeling may help to resolve the uncertainty in 𝒂𝑻𝒊𝑶𝟐in the system 

and application of instrumentation with significantly lower (i.e. ppb) detection limits, 

such as laser ablation-inductively coupled plasma- mass spectrometry (< 1 ppm detection 

limit, Haertel et al., 2013; Huang and Audétat, 2012) or secondary ion mass spectrometry 

(<100 ppb detection limit,  (Cross et al., 2015; Xia and Platt, 2018) could aid in refining 

temperature estimates. However, these techniques are outside the scope of this paper. 

 

Discussion of TitaniQ reliability in the CBSZ 

TitaniQ and ASIM deformation temperatures are in agreement within error, 

assuming 𝜶𝑻𝒊𝑶𝟐of 0.5-0.8 using the Thomas et al (2010) calibration. Limitations to the 

applications of TitaniQ to CBSZ rocks are discussed below, including thermometer 

calibration, activity constraints, and instrumental precision. The Huang and Audétat 

(2012) calibration is derived from a quartz bar grown synthetically by dissolution and 

reprecipitation. This calibration is dependent on growth rate, having only been calibrated 

for Ti concentrations in the slowest grown quartz samples (Huang and Audétat, 2012; 

Nachlas and Hirth, 2015).  Huang and Audétat (2012) tested their calibration against 

igneous quartz with independently estimated temperatures where Ti activities were 

between 0.15 and 0.6, and found their TitaniQ calibration to be in agreement with 

independent temperature estimates.  Later experimental studies found Ti concentrations 

to be independent of growth rate, calling the applicability of the Huang and Audétat 

(2012) calibration into question and confirming the original Thomas et. al. (2010) 

calibration (Nachlas and Hirth, 2015; Thomas et al., 2015).   

 Ti concentrations for analyzed samples from the CBSZ are relatively consistent 

within individual samples, where 2σ error is ≤ 7ppm with the exception of CB13-55a 

(430 m, discussed below). However, it is important to note that the detection limit on the 

EPMA is 11 ppm. Considering the instrumental detection limit along with the 2σ error on 

Ti concentrations, TitaniQ temperatures for all samples can be inferred to overlap within 

error. Furthermore, the assumption of a constant Ti activity across ~300 m of the shear 

zone width is likely oversimplified. We do not place much weight on the apparent 

variation of ~50 °C in TitaniQ temperatures from structurally high (446 m) to structurally 

low (134 m) positions. ASIM temperatures vary between samples beyond the error of the 

thermometer (50 °C). However, when considering error on the thermometer compounded 

with 2σ error on feldspar compositions, all ASIM temperatures also overlap.  

 Analysis on sample CB13-55a was conducted using a preliminary setup with 

three spectrometers (2 PET and 1 LLIF) with peak count times of 300 s on all three 

spectrometers or peak times of 300 s on PET and 600 s on LLIF spectrometers, yielding a 

detection limit between 13-22 ppm for individual analyses. Column conditions were 15 

keV, 100 nA current, with a 20 µm beam size. Although this setup yields a less desirable 

detection limit and in turn introduces a greater uncertainty in Ti concentrations, the 
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average temperature, assuming 𝜶𝑻𝒊𝑶𝟐 between 0.5 and 0.8, is within error of the ASIM-

derived temperature, which is relatively well constrained with analysis of 14 myrmekite 

lobes.   

 A discrepancy exists between microstructurally vs. quantitatively derived 

temperatures for the deepest sample, CB13-54a (446 m).  This sample preserves 

chessboard extinction within fractured feldspar (i.e. Fig. 5L) as well as grain boundary 

migration. Chessboard (CB) extinction is commonly attributed to basal <a> and prism [c] 

slip associated with the α-β transition in quartz (Kruhl, 1996). Even at the low pressures 

expected for the CBSZ (1-3 kb; Margirier et al., 2016), temperatures required for 

chessboard extinction are at least ~ 630 °C (Kruhl, 1996). Ti concentration is consistent 

between GBM and CB domains.  This could be explained by an initially low Ti activity 

(~0.1) when CB occurred and increased Ti activity during deformation, by decreased Ti 

concentrations due to volume diffusion at high temperatures, by ‘resetting’ the Ti 

concentration at lower GBM temperatures, or simply by instrumental accuracy.  

One sample that contained both GBM and SGR quartz recrystallization 

microstructures was analyzed for TitaniQ thermometry (CB13-79; 134 m).  Ti-

concentration (8 ± 6 ppm) was below the detection limit (11 ppm) of the electron probe 

microanalyzer (EPMA) at the University of Tennessee. SGR microstructures could 

indicate higher-strain rather than lower temperature conditions than those occurring 

during GBM recrystallizaiton, such that the Ti concentration would still be consistent 

with concentrations expected at relatively high temperatures. However, our analysis of 

this sample suggests that TitaniQ analysis especially for samples with SGR 

recrystallization microstructures is not viable without more precise instrumentation.   
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Supplementary figure S1. Quartz recrystallized grain size distributions. Number of grains 
in each population (N) in upper left corner.  Sample numbers listed with structrual depth 
below the detachment.
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Supplementary figure S2. EBSD-based evidence for grain boundary sliding in CB13-57a (384 m).  a) map of 
intragranular misorientations (relative to mean orientation of grain) using ‘mis2mean’ property in MTEX 
toolbox for MATLAB. Grain boundaries shown in black, critical misorientation: 10 degrees.  Thick black 
ellipses highlight aligned grain boundaries. Red arrows point to 4-grain junctions.  b) 1 point per grain pole 
figures of crystallographic preferred orientations for relict quartz grains (upper) and recrystallized quartz grains 
(lower).  Note the dispersion of weak maxima near the central (Y-direction) and lower perihphal areas in the 
recyrstallized pole figure relative to the relict pole figure (blue arrows).
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