3,167 research outputs found

    An inverse analysis for determination of space-dependent heat flux in heat conduction problems in the presence of variable thermal conductivity

    Get PDF
    Translator disclaimer Full Article Figures & data References Citations Metrics Reprints & Permissions Get accessAbstractThis article presents an inverse problem of determination of a space-dependent heat flux in steady-state heat conduction problems. The thermal conductivity of a heat conducting body depends on the temperature distribution over the body. In this study, the simulated measured temperature distribution on part of the boundary is related to the variable heat flux imposed on a different part of the boundary through incorporating the variable thermal conductivity components into the sensitivity coefficients. To do so, a body-fitted grid generation technique is used to mesh the two-dimensional irregular body and solve the direct heat conduction problem. An efficient, accurate, robust, and easy to implement method is presented to compute the sensitivity coefficients through derived expressions. Novelty of the study is twofold: (1) Boundary-fitted grid-based sensitivity analysis in which all sensitivities can be obtained in only one direct solution (at each iteration), irrespective of the number of unknown parameters, and (2) the way the measured temperatures on part of boundary are related to a variable heat flux applied on another part of boundary through components of a variable thermal conductivity. The conjugate gradient method along with the discrepancy principle is used in the inverse analysis to minimize the objective function and achieve the desired solution

    GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography.

    Get PDF
    To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain

    Multi-Parameter Entanglement in Femtosecond Parametric Down-Conversion

    Get PDF
    A theory of spontaneous parametric down-conversion, which gives rise to a quantum state that is entangled in multiple parameters, such as three-dimensional wavevector and polarization, allows us to understand the unusual characteristics of fourth-order quantum interference in many experiments, including ultrafast type-II parametric down-conversion, the specific example illustrated in this paper. The comprehensive approach provided here permits the engineering of quantum states suitable for quantum information schemes and new quantum technologies.Comment: to appear in Physical Review

    Surgical site infection following surgery for hand trauma: a systematic review and meta-analysis

    Get PDF
    Surgical site infection is the most common healthcare-associated infection. Surgical site infection after surgery for hand trauma is associated with increased antibiotic prescribing, re-operation, hospital readmission and delayed rehabilitation, and in severe cases may lead to amputation. As the risk of surgical site infection after surgery for hand trauma remains unclear, we performed a systematic review and meta-analysis of all primary studies of hand trauma surgery, including randomized controlled trials, cohort studies, case-control studies and case series. A total of 8836 abstracts were screened, and 201 full studies with 315,618 patients included. The meta-analysis showed a 10% risk of surgical site infection in randomized control trials, with an overall risk of 5% when all studies were included. These summary statistics can be used clinically for informed consent and shared decision making, and for power calculations for future clinical trials of antimicrobial interventions in hand trauma

    Molecular Spiders in One Dimension

    Full text link
    Molecular spiders are synthetic bio-molecular systems which have "legs" made of short single-stranded segments of DNA. Spiders move on a surface covered with single-stranded DNA segments complementary to legs. Different mappings are established between various models of spiders and simple exclusion processes. For spiders with simple gait and varying number of legs we compute the diffusion coefficient; when the hopping is biased we also compute their velocity.Comment: 14 pages, 2 figure
    corecore