
Title: GABA-ergic dynamics in human frontotemporal networks confirmed by pharmaco-1 

magnetoencephalography.   2 

Abbreviated: GABA networks by pharmaco-MEG.  3 

Authors: Natalie E. Adams1, Laura E. Hughes1,2, Holly N. Phillips1, Alexander D. Shaw2, Alexander G. 4 

Murley1, David Nesbitt1, Thomas E. Cope, W. Richard Bevan-Jones, Luca Passamonti, James B. 5 

Rowe1,2  6 

1 Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge,  7 

Cambridge, CB2 0QQ, UK  8 

2 MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF, UK  9 

3 Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge, UK  10 

Corresponding Author: James B. Rowe, james.rowe@mrc-cbu.cam.ac.uk  11 

Number of Pages: 38  12 

Number of Figures: 4  13 

Number of Tables: 1  14 

Number of Words for Abstract: 210  15 

Number of Words for Introduction: 650  16 

Number of Words for Discussion: 1489  17 

Conflict of Interest: The authors declare no competing financial interests.  18 

Acknowledgements: This work was funded by the Wellcome Trust (103838), the National Institute 19 

for Health Research Cambridge Biomedical Research Centre and the Medical Research Council 20 

(MC_U105597119; MC_U_00005/12; SUAG/004/91365), Cambridge Centre for Parkinson-plus and 21 

the Holt Fellowship.  We thank the PSP Association & FTD Support Group for raising awareness of 22 

the study. We also thank the School of Psychology, Cardiff University, 70 Park Pl, Cardiff, CF10 3AS, 23 

UK.  24 



Abstract 25 

To bridge the gap between preclinical cellular models of disease and in vivo imaging of human 26 

cognitive network dynamics, there is a pressing need for informative biophysical models. Here we 27 

assess dynamic causal models (DCM) of cortical network responses, as generative models of 28 

magnetoencephalographic observations during an auditory oddball roving paradigm in healthy 29 

adults. This paradigm induces robust perturbations that permeate frontotemporal networks, 30 

including an evoked ‘mismatch negativity’ response and transiently induced oscillations. Here, we 31 

probe GABAergic influences of the networks using double-blind placebo-controlled randomised-32 

crossover administration of the GABA re-uptake inhibitor, tiagabine (oral, 10mg) in healthy older 33 

adults. We demonstrate the facility of conductance-based neural mass mean-field models, 34 

incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms 35 

of the auditory response. The neuronal model accurately recapitulated the observed 36 

magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion 37 

across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep 38 

pyramidal and interneuronal cell populations.  We found a transition of the main GABAergic drug 39 

effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful 40 

integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal 41 

networks provides a potential platform on which to evaluate the effects of disease and 42 

pharmacological interventions.   43 



Significance Statement 44 

Understanding human brain function and developing new treatments require good models of brain 45 

function. We tested a detailed generative model of cortical microcircuits that accurately reproduced 46 

human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal 47 

cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on 48 

neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in 49 

health and disease with the mechanistic precision afforded by generative models of the brain.  50 

  51 



Introduction 52 

Biophysically informed models of cognition and cognitive disorders facilitate the effective translation 53 

of the mechanisms and treatments of disease. Recent progress towards detailed generative models 54 

that replicate neurophysiological correlates of cognition based on cellular and network dynamics, 55 

such as ‘Dynamic Causal Models’ (DCM), make predictions that approximate observations by 56 

functional magnetic resonance imaging or electro- and magneto-encephalography (MEG) (Moran et 57 

al., 2013). To be most useful, these models should incorporate laminar, cellular and synaptic 58 

functions (Bastos et al., 2012), and adhere to basic principles of cortical connectivity (Shipp, 2016), 59 

while also being sufficiently tractable and accurate to study cognition.  60 

The DCM framework developed to meet these criteria, with applications in health and neurological 61 

disorders (Kiebel et al., 2008; Stephan et al., 2008; Boly et al., 2011; Marreiros et al., 2015). DCMs 62 

draw on empirical priors for synaptic time constants and conductances, together with a mean-field 63 

forward model. They are optimised to match the observed neurophysiological data. DCMs are 64 

supported by extensive data for face-validity (Stephan et al., 2008, 2015) and construct-validity (Razi 65 

et al., 2015), but they must also achieve predictive validity (Moran et al., 2014; Gilbert and Moran, 66 

2016; Shaw et al., 2018).  67 

We tested the ability of DCMs to identify the effect of a pharmacological intervention. The DCMs 68 

were designed to model human frontotemporal cortical networks during an auditory oddball 69 

paradigm, with characteristic MEG responses to standard and deviant tones (<300ms). The 70 

differential response to these tones (the Mismatch Negativity, MMN) is abnormal in many 71 

neurological diseases (Boly et al., 2011; Naatanen et al., 2011; Hughes et al., 2013), reflecting a 72 

change in prediction errors in hierarchical frontotemporal networks (Garrido et al., 2009b; Phillips et 73 

al., 2015).  74 

To examine laminar- and synaptic-dynamics in response to auditory stimuli we developed a new 75 

DCM with six cell populations, called “ext-DCM”. In six connected regions (locations from Phillips et 76 



al., 2015, 2016), we used a conductance-based mean-field cortical modelling scheme (cf. Moran et 77 

al., 2013; Marreiros et al., 2015). For auditory mismatch responses, both thalamocortical and 78 

cortico-cortical connections integrate feedforward sensory inputs and feedback expectations. The 79 

network architecture controls the flow and integration of information, via cell- and 80 

neurotransmitter-specific interactions. The ext-DCM introduces new cortico-thalamic burst-firing 81 

cells (‘tp’ in Figure 1a) that enable the model to generate beta activity from deep-layers (Roopun et 82 

al., 2008a, 2010; Bordas et al., 2015; Michalareas et al., 2016). The ext-DCM also separates the 83 

inhibitory interneuronal populations for superficial and deep pyramidal cells (e.g. Jiang et al., 2015). 84 

These extensions improve the DCMs’ functionality in terms of laminar dynamics. We tested the 85 

model’s ability to accurately generate evoked magnetoencephalographic responses (i.e. event 86 

related fields, ERF), under placebo and drug conditions.   87 

With the ext-DCM, we used the drug tiagabine to test how well the neurophysiological model could 88 

identify changes in the causes of observed neuronal dynamics. Tiagabine is a gamma-amino-butyric 89 

acid (GABA) re-uptake inhibitor. GABA is critical for the generation of physiological responses and 90 

rhythms in local and global processing (Whittington et al., 2000). This pharmacological specificity 91 

provides a more controlled acute test of DCMs than autoimmune (Symmonds et al., 2018) and 92 

genetic channelopathies (Gilbert et al., 2016). 93 

Using parametric empirical Bayes to optimise the model across participants and drug conditions we 94 

examined how modelled GABAergic dynamics are altered by tiagabine. Based on the hypothesis that 95 

prediction and prediction error depend on short-term GABAergic plasticity (Castro-Alamancos and 96 

Connors, 1996; Garrido et al., 2009a; Mongillo et al., 2018; Spriggs et al., 2018), we predicted that 97 

upper and lower hierarchical frontotemporal processing would be differentially affected by tiagabine 98 

during standard and deviant tones. 99 

In summary, the study’s principal aims were i) to introduce and assess the ext-DCM for generating 100 

the event-related fields observed by MEG, ii) to identify receptor-specific changes that govern these 101 

dynamics, comparing tiagabine and placebo treatment conditions, and iii) to assess whether these 102 



pharmacological effects are expressed dynamically across trial types and regions with laminar 103 

specificity. 104 

  105 



Materials and Methods 106 

Experimental Design:  107 

We undertook a randomised placebo-controlled double-blind crossover study of the effects of 108 

tiagabine in 20 healthy adults (aged 67.5±4.2, ten male). Participants had no neurological or 109 

psychiatric illness and were recruited from the MRC Cognition and Brain Sciences and Join Dementia 110 

Research volunteer panels. The study was approved by the Cambridge Research Ethics Committee 111 

and written informed consent was acquired, in keeping with the declaration of Helsinki.  112 

Neurophysiological responses were measured in an auditory roving oddball paradigm (Garrido et al., 113 

2008). Binaural sinusoidal tones were presented in phase via ear-pieces for 75 ms (with 7.5ms ramp 114 

up and down at start and end of the tone), at 500 ms intervals. The frequency of the tone increased 115 

or decreased in steps of 50 Hz (range 400 – 800 Hz). The change of frequency occurred after 116 

between 3 and 10 repetitions, with a truncated exponential distribution that approximated a stable 117 

expectancy of change over time. Auditory thresholds were assessed in quiet at 500, 1,000, and 1,500 118 

Hz. Tones were presented at 60dB above the average threshold for a standard population through 119 

the earpieces in the MEG. 120 

Each participant attended two MEG sessions with a minimum two weeks interval. They received 121 

either 10 mg oral tiagabine or a placebo, in randomised order. Bloods were taken 105 minutes later, 122 

immediately prior to MEG data acquisition, to coincide with peak plasma levels and CNS penetration 123 

(Nutt et al., 2015). 124 

Data Acquisition and pre-processing: 125 

Magnetoencephalography (MEG) used a 306-channel Vectorview acquisition system (Elekta 126 

Neuromag, Helsinki) in a light Elekta Neuromag magnetically-shielded room. This consists of a pair of 127 

gradiometers and a magnetometer at each of 102 locations, sampled at 1000 Hz. Vertical and 128 

horizontal EOGs tracked eye movements and 5 head-position indicator coils tracked head position. A 129 

MEG-Compatible 70 channel EEG cap (Easycap GmbH) using Ag/AgCl electrodes positioned 130 



according to the 10-20 system was used concurrently. A 3D digitizer (Fastrak Polhemus Inc., 131 

Colchester, VA) was used to record >100 scalp data points, nasion and bilateral pre-auricular 132 

fiducials. Subjects also underwent T1-weighted structural magnetic resonance imaging (MPRAGE 133 

sequence, TE = 2.9 msTR = 2000 ms, 1.1mm isotropic voxels) using a 3T Siemens PRISMA scanner.  134 

MEG data pre-processing included head position alignment and movement compensation using 6 135 

headcoils, placed around the head on the EEG cap, and employed the temporal extension of Signal 136 

Space Separation with MaxFilter v2.2 (Elekta Neuromag). The auto-detection of bad channels was 137 

combined with manual input of any channels logged as bad during data acquisition. The Statistical 138 

Parametric Mapping toolbox (SPM12) (The Wellcome Trust Centre for Neuroimaging, UCL, UK) was 139 

used for further pre-processing and analysis, in conjunction with modified and custom MATLAB 140 

scripts (MATLAB 2017a, Mathworks, Natick, MA). Data were Butterworth filtered between 1 and 180 141 

Hz, epoched from -100 ms to 400 ms relative to the auditory stimuli and artefact rejected using EOG, 142 

EEG and MEG channel thresholding. Spectral analyses were performed using a multi-taper method. 143 

The deviant trial was taken as the 1st trial of a train, regardless of the frequency and the 6th trial of a 144 

train was modelled as ‘standard’.  145 

Source reconstruction used a forward model estimated using the single shell cortical mesh from 146 

each individual’s T1-weighted MR structural scan. After co-registration using the fiducials and head 147 

points, local fields (LFs) for 6 sources of interest were source-reconstructed using SPM “COH” 148 

method, a combination of LORETA and minimum norm (Pascual-Marqui et al., 1994; Heers et al., 149 

2016). Sources of interest were (with MNI coordinates in standard space following inverse 150 

normalisation): left auditory cortex (LAud; -42, -22, 7), left superior temporal gyrus (LSTG; -61 -32 8), 151 

left inferior frontal gyrus (LIFG; -46 20 8), right auditory cortex (RAud; 46, -14, 8), right superior 152 

temporal gyrus (RSTG; 59 -25 8) and right inferior frontal gyrus (RIFG; 46 20 8). To create images of 153 

induced power, SPM-LORETA was used for source localization of a 5 mm3 regular grid at the MMN 154 

(150 – 250 ms) time window (100ms in width, regularization=0.05).  155 



Correlation coefficients for comparing the actual and predicted ERFs were calculated using the 156 

corrcoef function (Pearson correlation) in MATLAB 2017a for each individual, condition and node.  157 

Time-frequency analysis was performed in SPM12 using a multi-taper method with 100 ms windows 158 

overlapped by 5 ms and a bandwidth of 3. Frequency bands were split into alpha (8 – 13 Hz), beta 159 

(14 – 29 Hz), low gamma (30 – 48 Hz) and high gamma (52 – 80 Hz). 160 

Neuronal Modelling: an extended canonical microcircuit model 161 

We used conductance-based canonical mean field (CMM) models for evoked responses (Kiebel et al., 162 

2008) utilising canonical microcircuit models (SPM12, DCM10). This approach to 163 

neurophysiologically informed modelling using DCM goes beyond descriptive biomarkers by 164 

providing a mechanistic link to realistic microscopic processes. A common approach in DCM is to 165 

invert the neuronal and spatial forward model as a single generative model, to solve the source 166 

reconstruction and biophysical modelling problems jointly by fitting the DCM to sensor data. 167 

However, we modelled source specific responses to suppress conditional dependencies between the 168 

neuronal parameters and the parameters of a spatial forward model. This affords more efficient 169 

estimators of neuronal parameters, providing the source reconstruction is sufficiently precise given 170 

the spatial topography of the network of interest. This has the advantage of compatibility with 171 

multiple studies of this task (Muthukumaraswamy et al., 2015; Gilbert and Moran, 2016; Shaw et al., 172 

2017, 2018), including MEG and electrocorticography studies; the chosen network was based on the 173 

published bilateral A1, STG, IFG networks associated with the generation of the MMN response. 174 

Since this spatial element of the inverse problem was constrained, it is computationally more 175 

appropriate to source localise using SPM with prior expected sources. The subsequent DCM was 176 

then run on these virtual electrodes.  177 

Our DCM included a conductance-based neural-mass model at each of the six anatomical locations, 178 

as shown in Figure 1. We compared the default 4-cell conductance canonical-microcircuit model 179 

with the ext-DCM, comprising 6 cell modules: a superficial pyramidal module (sp), a deep cortico-180 



cortical pyramidal module (dp), a thalamic-projection pyramidal module (tp), a granular stellate 181 

module (ss) and separate supragranular and infragranular interneuron populations (si & di). 182 

Excitatory autapses existed for all excitatory cell modules and all modules were also governed by an 183 

inhibitory self-gain function that provided tonic inhibition to each module. The ext-DCM was 184 

compared to the standard 4-cell model that is standard in SPM and is described in detail in Kiebel et 185 

al. (2008). In summary, the 4-cell DCM lacks thalamocortical connectivity and has a unitary inhibitory 186 

population interacting with all pyramidal and stellate cell populations.  187 

The intrinsic connectivities are shown in Fig. 1a: note the excitatory conductances based on AMPA 188 

and NMDA and inhibitory GABA-A and GABA-B conductances. The model is an extension of the SPM 189 

conductance-based CMM model (SPM12, 2013): inclusion of separate supra- and infra-granular 190 

interneuron populations creates a more biophysically realistic model that allows a greater flexibility 191 

of independence of deep and superficial activity than in previous work (Bhatt et al., 2016; Shaw et 192 

al., 2018; Spriggs et al., 2018). Additionally, the new ‘tp’ population expressed a hyperpolarization-193 

activated cation current (H-current) and a non-inactivating potassium current (M-current) to provide 194 

surrogate intrinsic dynamics involved in the characteristic intrinsic bursting behaviour of these cells. 195 

These two currents were fixed together with the reversal potential and the slope on the sigmoid 196 

convolution of in-activation for the H-current (details of which parameters had a permitted variance 197 

is given in Table 1). This, coupled with the cell capacitances, differentiates the intrinsic activation of 198 

the ‘tp’ population from the ‘dp’ population. The populations also differed in their extrinsic 199 

connectivities, with ‘dp’ populations forming cortico-cortical connections and ‘tp’ populations 200 

allowing for cortico-thalamocortical connections. The thalamus was modelled implicitly, by an 80 ms 201 

delay in connectivity with permitted variance.  202 

Extrinsic connectivity between the six nodes is shown in Fig. 1b, with the detailed extrinsic 203 

population connections shown in Fig. 1c. In keeping with the established principle of differential 204 

cortical laminar projections of feed-forwards vs feedback connectivity (Bastos et al., 2012), backward 205 

connections are facilitated by the ‘dp’ cells terminating on ‘sp’ and ‘si’ cells, whilst forward 206 



connections run from ‘sp’ cells to ‘ss’ cells. Cortico-thalamo-cortical connections originate from ‘tp’ 207 

cells and terminate following a thalamic delay at layer 4 ‘ss’ cells. The presence or absence of 208 

connections between nodes was based on the fully connected models from Phillips et al., (2015) and 209 

Shaw et al., (2019), which in turn were derived from Garrido et al., (2008). This was used for the 210 

basis of an iterative process to find the most likely reduced model (described below). 211 

A Gaussian kernel (peak 60 ms, half-width 8 ms) represented auditory input to layer 4 stellates in 212 

bilateral auditory and inferior frontal cortex. 213 

Bayesian Modelling and Statistical Analysis:  214 

We used Bayesian model inversion (estimation) and Bayesian model comparison (selection) to 215 

identify the best explanation for subject-specific data, in terms of neuronal and biophysical 216 

parameters. Parametric Empirical Bayes (PEB) was used for group inferences and to examine drug 217 

effects, as described in Zeidman et al., (2019).  By inverting a ‘full’ DCM per subject at the first level, 218 

PEB avoids the problem of different first level DCMs falling into different local optima, and allows 219 

subsequent comparison between conditions. At the second level, the parameters of interest were 220 

included in the PEB, namely the GABAA synaptic connections. This restricted set of second level 221 

parameters was oriented to our GABA-ergic hypothesis, and to improve stability of neural system 222 

identifiability. 223 

The DCM was run for each subject. Data were filtered between 0–48 Hz and a Tukey window was 224 

applied that did not attenuate signals 50 ms before or 350 ms after stimuli. Inversion of the full 225 

model was run separately for the standard and deviant trials and the parameter distributions passed 226 

to second level Parametric Empirical Bayesian with contrasts for both trial types and drug conditions. 227 

All intrinsic and extrinsic AMPA, NMDA and GABA-A conductance scalings could vary independently 228 

in a manner that assumed symmetry between the two hemispheres. The prior means and permitted 229 

variances are summarised in Table 1.  230 



Variational Bayesian statistics using the Laplace approximation determined the probable parameter 231 

space given the neuronal model and the data (Friston et al., 2007). The full model parameter space 232 

was reduced by iteratively searching for dependencies in this parameter space and systematically 233 

removing parameters not contributing to the free energy of the system (Henson et al., 2011). The 234 

optimised reduced model comprises all those parameters and connections found to contribute 235 

significantly to the system temporal dynamics. The comparison of full and reduced models is 236 

conceptually analogous to F-tests in classical statistics, but inferences are Bayesian. A second-level 237 

PEB was run, optimizing GABAA-ergic synaptic parameters (representing inhibitory gain). This second 238 

level PEB identifies parameter that are estimated to differ significantly between task conditions, or 239 

differ between drug-sessions, or for which there is a drug-by-condition interaction. The parameter 240 

distributions from this reduced model were used to create a Bayesian model average of parameters 241 

that differ significantly across the contrasts of trial types and drug conditions. The implementation of 242 

PEB for model optimisation and contrast estimation is summarised in Fig. 1e.  243 

For other data types, Bayesian t-tests reported in the main text used JASP (JASP Team 2019, version 244 

0.10.2). Frequentist statistical methods reported in the main text used MATLAB (2017a, Mathworks, 245 

Natick, MA).  246 

Code Accessibility: The custom neuronal model used to generate these results is available at 247 

[address on acceptance] and works in conjunction with SPM12. 248 

  249 

https://github.com/TallieAdams/tgb-mmn-con-edcm/


Results 250 

Event related fields and induced spectral power 251 

Event related responses to standard and deviant trials were in line with previous findings (Hughes 252 

and Rowe, 2013; Phillips et al., 2015, 2016) (Fig. 2a, first and second rows) and show the expected 253 

M100, the primary response after the onset of a tone (80-120 ms), a difference signal (MMN) 254 

between the standard and deviant trials (150-250 ms) and an M300 visible in frontal nodes (250-380 255 

ms). The M100 was significantly reduced by tiagabine on standard and deviant trials, in left temporal 256 

nodes (A1, and STG p<0.05, paired t-test), whereas the later response leading into the M300 was 257 

significantly reduced only on deviant trials in L/R IFG (p<0.05, Bonferroni corrected for 6 regions). 258 

The difference waveform (i.e. the deviant – the standard) reveals a typical biphasic MMN between 259 

150-250ms, observed in primary auditory cortex and STG (Fig. 2a, third row). Tiagabine significantly 260 

reduced the second peak of the MMN (p<0.05) with bilateral IFG nodes and RSTG showing 261 

reductions in the first peak of the mismatch response on tiagabine (p<0.05). As with the deviant 262 

response, LIFG showed a significant reduction of the later MMN peak and the M300 on tiagabine 263 

(p<0.05).  264 

The temporal profile of spectral power differences (see Methods for time-frequency analysis) 265 

matched that of the ERFs, including spectral counterparts to M100, MMN, continuing through the 266 

M300 window (Fig. 2b&c). During the M100, alpha-power (8-12 Hz) decreases on tiagabine were 267 

localized to temporal cortex and beta (14-29 Hz) decreases more prominently to posterior temporal 268 

cortex. During the MMN, increases in low and high gamma (30-48 Hz and 52-80 Hz respectively) 269 

were observed broadly across right frontal cortex, including IFG. Low gamma also showed increases 270 

in right temporal cortex.  271 

Such changes in the observed spatiotemporal physiology on tiagabine will be dependent on changes 272 

in local and global network connectivity. The extended conductance-based dynamic causal model 273 

was therefore used to infer the causes of the observed physiological changes.   274 



The Dynamical Causal Model:  275 

The residuals (difference between the actual and generated ERFs) were greater (worse) for the 4-cell 276 

DCM than for the ext-DCM (Bayesian paired sample t-test: BF=8.5x1028) as shown in Fig. 3a. Bayesian 277 

model comparison of the 4-cell versus ext-DCM confirmed that the ext-DCM performed better (ie. 278 

was a more likely generator of the observed MEG) than the 4-cell DCM (BF = 40.6, Figure 3b). Note 279 

that the model-evidences are corrected for differences in model complexity. Further analyses use 280 

the ext-DCM only.  281 

Fig. 3c demonstrates the evoked-response generated by the conductance-based dynamic causal 282 

model at each node, for both drug conditions, using the optimal ext-DCM model as determined by 283 

Parametric Empirical Bayes (see methods). Fig. 3d shows the correlation between generated and 284 

observed data, for both standards’ and deviants’ responses, for both drug conditions at each node. 285 

Boxplots indicate the spread of single-subject correlations across the group (open circles are 286 

outliers), and black closed circles indicate the correlation of the mean response across all subjects 287 

for each condition and node. Note how the periods of difference between the placebo and drug 288 

conditions (black lines in Fig. 3c) are accurately generated (cf. ‘predicted’) by the model, with a high 289 

match to the observed data in Fig. 2a.  290 

The modelled responses are explained in terms of the parameters of the optimised model. Using 291 

parametric empirical Bayes, condition effects on model parameters (connection and synaptic 292 

parameters) were compared across the standard and deviant conditions, as well as across the 293 

placebo and tiagabine conditions. Figure 4 shows the effect of tiagabine on the intrinsic GABAergic 294 

connectivity, assuming symmetry (three bilateral averaged nodes are shown). We confirmed that 295 

tiagabine significantly increases tonic GABAergic inhibition (posterior probability given for each 296 

parameter in Fig. 4a). This was seen primarily in the deep layer pyramidal and interneuron 297 

populations in primary auditory cortex and STG (Fig. 4a).  An interaction between drug and condition 298 

was found for the deep interneurons of Auditory cortex (posterior p≈1.0).  299 



Fig. 4b compares GABA-A conductance scaling on deep interneurons between placebo and tiagabine 300 

conditions, plotted for each individual. There was very strong evidence for differences between the 301 

two drug conditions in primary auditory areas for the standard condition (BF=782356), and in IFG 302 

and STG for the deviant condition (BF=3.58x107 & BF=166 respectively). This difference between 303 

primary auditory cortex and association cortex in STG/IFG, is in keeping with the functional 304 

differentiation of upper versus lower levels in a hierarchical neural network with backwards 305 

prediction and forward prediction error. Conversely, there was evidence of no difference between 306 

the two drug conditions for the standard condition in IFG (BF=0.274) and for the deviant condition in 307 

Aud (BF=0.241).  308 

The correlation between tonic and phasic inhibition was explored for each region and condition. In 309 

the frontal cortex, a strong negative relationship was found between the tonic inhibition of deep 310 

inhibitory cells and their phasic inhibition onto cortico-thalamic cells (Fig. 4c Bayesian correlation 311 

pairs, BF=398.43). 312 

  313 



Discussion  314 

The principal insights from this study are that an extended conductance-based canonical mean-field 315 

method of dynamic causal modelling (a) succeeds in identifying the modulation of GABAergic 316 

dynamics by the GABA-reuptake inhibitor tiagabine, and (b) is tractable and an accurate generator of 317 

event-related fields that match those observed by magnetoencephalography, improving on an 318 

earlier 4-cell model. Moreover, the ext-DCM suggests the effect of drug to be both laminar-specific 319 

and dynamically modulated in different regions according to task condition. This opens the way for 320 

psychopharmacological studies in health and disease with the mechanistic precision afforded by 321 

using ext-DCMs as generative models.  322 

We demonstrate that the intrinsic connectivity within hierarchical brain networks changes between 323 

conditions in the mismatch task. The approach is of generalised relevance to hierarchical network 324 

models of cognition such as speech (Cope et al., 2018), semantic (Adams et al., 2019) and visual 325 

perception (Muthukumaraswamy et al., 2013). Moreover, the laminar and pharmacological 326 

specificity provided by the ext-DCM has the potential to quantify neuropathology in dementia, 327 

developmental and psychiatric disorders (Duyckaerts et al., 1986; Kinoshita et al., 1996; Ferrer, 328 

1999; Ji et al., 2018; Shaw et al., 2018). 329 

Understanding the MMN in terms of short-term plasticity.  330 

Tiagabine modulated the GABA-egic dynamics across the trial types, implicating both local tonic- and 331 

phasic effects. Repetitive activation with the same stimulus attenuated the ERF (reduction in N1/N2 332 

by 6th repetition, Fig. 2). The model indicated higher tonic inhibition in the deep layers. We interpret 333 

this as local short-term plastic changes in deep-layer inhibition (Knott et al., 2002; Hensch, 2005; 334 

Jääskeläinen et al., 2007), regulating salient information (Mongillo et al., 2018). 335 

The model suggested that tiagabine-induced increases of extracellular GABA leads to greater tonic 336 

inhibition, consistent with overspill of GABA onto extra-synaptic receptors (Semyanov et al., 2004). 337 

The effect was modulated differently in primary and associative processing areas: for tonic inhibition 338 



of deep interneurons the drug’s efficacy was highest in prefrontal cortex for deviant trials and in 339 

auditory cortex for standard trials. In other words, GABAergic effects are modulated differentially in 340 

upper and lower areas of the hierarchy dependent on the coding context. We speculate that this 341 

reflects differential emphasis on beliefs (& feedback predictions) versus feedforward sensory 342 

prediction errors in prefrontal versus primary auditory cortex; and that lower tonic inhibition at the 343 

presentation of a deviant tone relates to homeostatic competition between phasic and tonic 344 

inhibition (Wu et al., 2013). Increased phasic activation of deep-layer projections is necessary for 345 

feedback of top-down information on context, which in turn increases phasic (and decreased tonic) 346 

activation of deep interneurons. Decreasing tonic inhibition likely increases the interneuron 347 

population activation (Semyanov et al., 2004), leading to increased phasic inhibition onto deep 348 

pyramidal cells. This relationship was confirmed (Fig. 4c) between tonic inhibition of deep IFG 349 

interneurons and phasic inhibition of deep IFG thalamic-projection neurons. Figure 4b shows that 350 

whereas a drop in deep interneuron tonic inhibition was observed on deviant trials (vs standard), 351 

tiagabine abolished the effect. It is to be expected that increases in exogenous GABA would increase 352 

tonic GABAergic currents.  353 

GABA-ergic modulation of evoked and induced responses.  354 

Tiagabine affects oscillatory dynamics, which may influence behaviour (Coenen et al., 1995; 355 

Magazzini et al., 2016; Port et al., 2017; Wyss et al., 2017). It remains a challenge to relate systemic 356 

drug effects with local frequency-spectral phenomena. It has been proposed that beta-band activity 357 

is associated with infragranular cortical projection neurons with intrinsically bursting profiles (Groh 358 

et al., 2010; Roopun et al., 2010; Kim et al., 2015). We found that Tiagabine reduced the induced 359 

beta-band activity in temporal areas. The model suggests that tonic inhibition is increased on 360 

intrinsically bursting thalamic projection neurons in STG, which could increase rebound bursting via 361 

intrinsic M- and H-currents (Roopun et al., 2008; Roopun et al., 2008b). 362 

Conversely, it has been shown that gamma-band activity is dependent on the GABA-A receptor 363 

activation and the phasic interplay of interneuron-pyramidal cell networks, particularly in the 364 



superficial layers (Buffalo et al., 2011; Whittington et al., 2011). In the mismatch temporal window 365 

(Fig. 2b) peak gamma increased occurring at the start of the mismatch period. This is consistent with 366 

thalamic input (Di and Barth, 1992, 1993; Sukov and Barth, 2001) governing the envelope of gamma 367 

activity in the superficial layers (Metherate and Cruikshank, 1999). 368 

Overall, the observed dynamics and the model posterior parameters are consistent with knowledge 369 

of network activation within the context of beta- and gamma- rhythm generation in cortex. 370 

Generative models of drug effects on cognitive physiology. 371 

Tiagabine’s effect was largely confined to deep layers. As we modelled evoked activity it is difficult to 372 

speculate on how this influences gamma activity across the network, however a reduction in deep-373 

layer influence may increase local cortical processing associated with gamma-band activity in the 374 

superficial layers. As GABA levels are typically lower in older versus younger adults, tiagabine may 375 

act ‘restoratively’. This is corroborated with lower frequency responses that are dependent on GABA 376 

(Mathias et al., 2001). Finally, we speculate that the reduced M100 on tiagabine results from the 377 

widespread increased tonic inhibition represented in the model (Fig. 4), reducing local population 378 

activity. 379 

Study limitations. 380 

Our study was motivated by the need for mechanistic studies of human cortical function, underlying 381 

cognition, disease and therapeutics. Despite support for our three principal hypotheses, and 382 

background validation studies (Moran et al., 2014), evidence from one study may not generalise to 383 

other tasks and populations. There are study-specific considerations that limit our inferences, in 384 

relation to our participants, our model, and drug of choice. For example, our participants were 385 

healthy, and therefore have normal age related variance in GABA (Gao et al., 2013; Eavri et al., 386 

2018). They were older than those studied by Nutt et al (2015), and age-effects could interact with 387 

the effects of tiagabine (Nutt et al., 2015). Our study was not designed to examine the effect of age 388 



or ageing, but to focus on the normal brain in mid- and later-life. Further work would be required to 389 

examine the effects of ageing on the ext-DCM.  390 

Our model provides a simplified substrate for the neurophysiological processes. It is more detailed 391 

than previous canonical microcircuit convolution models (Moran et al., 2013), in an effort to improve 392 

the modelling of specific dynamics from distinct cell populations, their differing connectivities, 393 

synaptic time constants and voltage-gated conductances. The extended model can produce a 394 

spectrum of fast and slow responses, with fast responses involved in local processing dominated by 395 

superficial layers and slower responses associated with feedback of information dominated by deep 396 

layers (Roopun et al., 2006; Kramer et al., 2008; Whittington et al., 2011). It can incorporate delayed 397 

activity associated with local, cortico-cortical and cortico-thalamo-cortical connections. Currently, 398 

this system is a simplified network acting as a neural mass, and can represent relevant cortical 399 

interactions involved in ERF generation in the context of this task and study. It does this by allowing 400 

forward and backward modulation of activity between deep and superficial layers, where synaptic 401 

time constants corroborate with standard GABA, NMDA and AMPA receptor decays. The six 402 

specified nodes are commonly cited in the literature in the context of this task (Garrido et al., 2009b; 403 

Phillips et al., 2015). Although they are not a complete representation of possible network 404 

configurations, they have been shown to capture critical aspects of cortical function: here the 405 

network has been supplemented with modelled exogenous and endogenous inputs via thalamus.  406 

We emphasise Bayesian statistical analyses over classical frequentist methods. Where parameter 407 

estimates derived from earlier DCMs are used for frequentist statistical tests, they have excellent 408 

reliability across sessions, and similar power to fMRI and EEG studies (Rowe et al., 2010; Goulden et 409 

al., 2012; Bernal-Casas et al., 2013). Frequentist approaches are familiar to many readers, and have 410 

been the norm for comparison of ERFs, and we therefore include them selectively. Such a 411 

frequentist approach is surpassed by the direct inferences on posterior probability inherent in DCMs 412 

Bayesian inference, including PEB.  413 



Tiagabine is a relatively specific blocker of GAT-1 at the concentrations used, but does not 414 

distinguish between the mechanisms activated by GABA (Bowery et al., 1987; Mody and Pearce, 415 

2004; Lee and Maguire, 2014). The timing of the magnetoencephalography coincided with expected 416 

peak plasma levels, but levels may vary between individuals and future studies could include levels 417 

as a covariate of interest, or model time-varying responses in relation to drug levels 418 

(Muthukumaraswamy et al., 2013b). 419 

In conclusion, we have used a conductance-based model of cortical neuronal dynamics to study 420 

GABA-ergic interactions and probe laminar-specific physiological responses to tiagabine. The model 421 

accurately generated physiological data that matched the MEG responses and confirmed the effect 422 

of tiagabine on tonic GABA-A inhibitory gain within frontal and temporal cortical circuits. Our data 423 

provide support for mechanistic studies of neurological disorders, including but not limited to 424 

GABAergic impairments (Murley and Rowe, 2018). They also point to new approaches for 425 

experimental medicine studies in humans that aim for the laminar, cellular or synaptic precision 426 

made possible in new generations of dynamic causal models. 427 

 428 
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 740 

  741 



Figure Legends 742 

Figure 1. The neuronal model. 743 

a. Intrinsic connectivities found in all nodes between layer 4 stellates (ss), inhibitory interneurons (ii), 744 

superficial pyramidal modules (sp) and deep pyramidal modules (dp). 745 

b. All 6 nodes used are represented as a network on the left, showing the extrinsic connectivities 746 

(solid line = forward; dotted line = backward; dashed line = lateral). A left hemisphere representation 747 

of these bilateral nodes in primary auditory cortex, superior temporal gyrus and inferior-frontal 748 

gyrus (light, medium and dark grey, respectively). 749 

c. A detailed view of the extrinsic population connections for forward (solid lines) and backward 750 

(dotted lines) connections. 751 

d. Matrices of the extrinsic and intrinsic connectivity weights, all of which had a permitted variance 752 

of 1/16. 753 

e. A process flow describing the steps taken in the meta-analysis phase. 754 

 755 

Figure 2. Event Related Fields (ERFs). 756 

a. Mean ERFs across all subjects for all six nodes for the standard and deviant trials from 0-380ms. 757 

The difference wave (MMN) is also shown. ERFs from the placebo condition are shown in blue and 758 

from the tiagabine condition in red. Significant changes with time across the drug condition are 759 

shown as a thick black line within each axis (p<0.05, Bonferroni corrected for 6 regions). Shaded 760 

areas represent the standard error (SEM). 761 

b. Significant differences for induced spectra power were found in the alpha (α), beta (β) and lower 762 

and higher gamma bands (γ1 and γ2) (FWE cluster corrected at p<0.001). Here they are shown as flat 763 

scalp maps (lower plots) with rostro-caudal activity versus time (upper plots). The time axis runs 764 

from 0–380 ms post-stimulus. 765 



c. Source-reconstructed T-contrasts (p<0.001) created for those frequency bands showing spatial 766 

changes across the drug condition in the 135 – 235 ms time window. 767 

 768 

Figure 3. Comparison between model and data. 769 

a. Residual differences between the observed and model-generated ERFs are shown for both the 770 

standard 4-cell conductance-based DCM and the ext-DCM. ERFs from all nodes for every subject are 771 

concatenated along the y-axis. 772 

b. Bayesian model comparison of the 4-cell conductance-based DCM and the ext-DCM favours the 773 

ext-DCM, plotted here in terms of the posterior model probability (RFX Bayes Factor = 40.6). 774 

c. Predicted ERFs are shown for the standard and deviant conditions, along with the difference wave 775 

(Std–Dev). The placebo and tiagabine conditions are depicted in blue and red respectively with 776 

significant differences (p<0.05, Bonferroni corrected for 6 regions) shown as a thick black line within 777 

each axis. 778 

d. Correlation coefficient between prediction and data for each node and each condition. Boxplots 779 

represent the distribution over subjects with small dots representing outliers and larger black circles 780 

representing the correlation coefficient of the meaned response of all subjects for each node and 781 

each condition. 782 

 783 

Figure 4. Prediction of hidden states. 784 

a. Significant differences in the modulation of GABA-A synaptic scaling for each of the three 785 

symmetric nodes. Green/red show significantly greater/lesser GABA-A synaptic scaling for tiagabine 786 

than the placebo. Posterior probability p-values are shown next to each connection. 787 

b. To explore the functional differentiation between regions during the task conditions with respect 788 

to tonic inhibition, tonic GABA-A scaling on deep interneurons in IFG, STG and Aud, for each 789 



individual is plotted for the placebo and tiagabine conditions. The standard and deviant conditions 790 

are plotted separately in the left and right columns respectively. Pair-wise Bayesian t-test statistics 791 

are reported on each plot, showing the Bayes Factor for each of the 6 comparisons. When there is 792 

evidence for a difference, or evidence for no difference, the Bayes factor is shown in green or blue 793 

respectively. 794 

c. The correlation demonstrates the dynamic balance that persists between phasic and tonic 795 

inhibition (see main text discussion). Linear fit with 95% confidence bounds for tonic GABA-A scaling 796 

on deep inhibitory neurons vs phasic GABA-A scaling from deep inhibitory neurons to thalamic 797 

projecting pyramidals (Bayesian correlation pairs, Bayes factor=398.43). 798 

 799 

 800 
Table 1. Model parameters. 801 

Parameter values used by the neuronal model are shown with their permitted variances.  802 

 803 



Parameter grouping Parameter Initial value Permitted variance

Decay

Constants, τ (ms)

AMPA τ 4 1/16

NMDA τ 100 1/16

GABAA τ 16 1/8

GABAB τ 200 1/8

IM τ 160 0

IH τ 100 0

Misc. strengths

K+ leak G 1 0

Background V 2.17 1/32

Reversal potentials (mV)

Na2+ reversal 60 0

Ca2+ reversal 10 0

Cl- reversal -90 0

K+ reversal -70 0

IH reversal -100 0

Firing threshold (mV) VT (all pops) -40 0

Firing precision VX (all pops) 1 1/32

IH I-V slope VHX 300 0

Cell

Capacitances (pF)

ssC 200 1/32

spC 150 1/32

siC 50 1/32

dpC 400 1/32

diC 50 1/32

tpC 200 1/32

Delays (ms)

intrinsic 2 1/32

extrinsic

cortico-cortical
16 1/32

extrinsic thalamo-

cortical
80 1/32 Table 1
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