144 research outputs found

    An analytical and numerical study of magnetic spring suspension and energy recovery mechanism

    Get PDF
    As the automotive paradigm shifts towards electric, limited range remains a key challenge. Increasing the battery size adds weight, which yields diminishing returns in range per kilowatt-hour. Therefore, energy recovery systems, such as regenerative braking and photovoltaic cells, are desirable to recharge the onboard batteries in between hub charge cycles. While some reports of regenerative suspension do exist, they all harvest energy in a parasitic manner, and the predicted power output is extremely low, since the majority of the energy is still dissipated to the environment by the suspension. This paper proposes a fundamental suspension redesign using a magnetically-levitated spring mechanism and aims to increase the recoverable energy significantly by directly coupling an electromagnetic transducer as the main damper. Furthermore, the highly nonlinear magnetic restoring force can also potentially enhance rider comfort. Analytical and numerical models have been constructed. Road roughness data from an Australian road were used to numerically simulate a representative environment response. Simulation suggests that 10’s of kW to >100 kW can theoretically be generated by a medium-sized car travelling on a typical paved road (about 2–3 orders of magnitude higher than literature reports on parasitic regenerative suspension schemes), while still maintaining well below the discomfort threshold for passengers (<0.315 m/s 2 on average)

    Effect of 1-MCP on storage quality and the mechanism involved in ethylene signal transduction in a new early-maturing apple variety ‘Taihangzaohong’ fruits during cold storage

    Get PDF
    1-Methylcyclopropene (1-MCP) can reduce the rate of fruit softening and prolong storage time. In this study, the fruit of a new early-maturing apple variety, ‘Taihangzaohong’, was treated with air (control), 2 μL/L 1-MCP, 100 μL/L ethylene (C 2H4) or 2 μL/L 1-MCP +100 μL/L C2H4 for 24 hours and then stored at 4 °C for 70 days. The postharvest physiological indices and the expression of 13 genes related to ethylene biosynthesis and signal transduction were monitored every 10 days. The results showed that 1-MCP can delay the softening rate and maintain the fruit quality of this early-maturing apple variety by reducing ethylene production by reducing the expression of MdACO1, MdACO2, and MdACS1, as well as by preventing ethylene signal transduction by decreasing the expression of MdETR2 and MdERS1 and increasing the expression of MdCTR1. Understanding the significant changes in these genes and their functions may help us explore the mechanisms controlling apple fruit softening and its response to exogenous 1-MCP and ethylene stimuli, as well as inhibition at the receptor level during ripening and senescence

    Acoustic transmission enhancement through a periodically-structured stiff plate without any opening

    Full text link
    We report both experimentally and theoretically that the enhanced acoustic transmission can occur in the subwavelength region through a thin but stiff structured-plate without any opening. This exotic acoustic phenomenon is essentially distinct from the previous related studies originated from, either collectively or individually, the interaction of the incident wave with openings in previous structures. It is attributed to the structure-induced resonant excitation of the non-leaky Lamb modes that exist intrinsically in the uniform elastic plate. Our finding should have impact on ultrasonic applications.Comment: 11 pages, 4 figure

    Information exposure from consumer IoT devices: a multidimensional, network-informed measurement approach

    Get PDF
    Internet of Things (IoT) devices are increasingly found in everyday homes, providing useful functionality for devices such as TVs, smart speakers, and video doorbells. Along with their benefits come potential privacy risks, since these devices can communicate information about their users to other parties over the Internet. However, understanding these risks in depth and at scale is difficult due to heterogeneity in devices' user interfaces, protocols, and functionality. In this work, we conduct a multidimensional analysis of information exposure from 81 devices located in labs in the US and UK. Through a total of 34,586 rigorous automated and manual controlled experiments, we characterize information exposure in terms of destinations of Internet traffic, whether the contents of communication are protected by encryption, what are the IoT-device interactions that can be inferred from such content, and whether there are unexpected exposures of private and/or sensitive information (e.g., video surreptitiously transmitted by a recording device). We highlight regional differences between these results, potentially due to different privacy regulations in the US and UK. Last, we compare our controlled experiments with data gathered from an in situ user study comprising 36 participants

    PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm

    Full text link
    The Earth’s ionosphere plays an important role in supplying plasma into the magnetosphere through ion upflow/outflow, particularly during periods of strong solar wind driving. An intense ion upflow flux event during the 1 June 2013 storm has been studied using observations from multiple instruments. When the open‐closed field line boundary (OCB) moved into the Poker Flat incoherent scatter radar (PFISR) field of view, divergent ion fluxes were observed by PFISR with intense upflow fluxes reaching ~1.9 × 1014 m−2 s−1 at ~600 km altitude. Both ion and electron temperatures increased significantly within the ion upflow, and thus, this event has been classified as a type 2 upflow. We discuss factors contributing to the high electron density and intense ion upflow fluxes, including plasma temperature effect and preconditioning by storm‐enhanced density (SED). Our analysis shows that the significantly enhanced electron temperature due to soft electron precipitation in the cusp can reduce the dissociative recombination rate of molecular ions above ~400 km and contributed to the density increase. In addition, this intense ion upflow flux event is preconditioned by the lifted F region ionosphere due to northwestward convection flows in the SED plume. During this event, the OCB and cusp were detected by DMSP between 15 and 16 magnetic local times, unusually duskward. Results from a global magnetohydrodynamics simulation using the Space Weather Modeling Framework have been used to provide a global context for this event. This case study provides a more comprehensive mechanism for the generation of intense ion upflow fluxes observed in association with SEDs.Key PointsA more comprehensive mechanism for the generation of intense ion upflow fluxes observed in association with SEDs has been providedNorthwestward convection flows lift the F region ionosphere within SED and provide seed population for intense ion upflow fluxesSignificantly elevated electron temperature reduces recombination rate contributing to density increasePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136519/1/jgra53328.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136519/2/jgra53328_am.pd

    Crystal structure, thermal analyses, and acetate binding properties in Zinc(II) complex of a urea-functionalized pyridyl ligand

    Get PDF
    1302-1310A zinc(II) acetate complex with a urea-functionalized pyridyl ligand, [ZnL2(OAc)2]·2H2O (1) (L = N-(4-chlorophenyl)-N'-(4-pyridyl)urea), has been synthesized by the reaction of L with Zn(OAc)2·2H2O under water-containing condition. X-ray single-crystal diffraction analyses reveal that 2-D sheetlike network structure has been formed by the urea N−H×××Npyridyl interactions and C–H···O interactions in the free ligand L. Complex 1 features 3-D hydrogen bonded network formed by intermolecular N−H···O hydrogen bonds and O−H×××O hydrogen bonds involving urea groups, acetate anions and bridged water molecules. The hydrogen bonds play an important role in stabilizing the supramolecular structures. Thermal gravity analyses have been used to investigate the thermal stabilities of L and 1, and the apparent activation energy (Ea) of the decompositions have also been calculated, and the results indicate that the main decomposition of L needs higher apparent activation energy values Ea than that of 1. The acetate binding properties of L in solution have also been evaluated by Ultraviolet-Visible (UV-Vis) spectroscopy. CCDC: 1506202, L; 1506203, 1

    Event Studies of O+ Density Variability Within Quietâ Time Plasma Sheet

    Full text link
    To understand the variations of the O+ ions in the quietâ time plasma sheet between the regions of coldâ dense plasma sheet (CDPS) and hot plasma sheet (HPS), we conduct three event studies. These studies investigate the O+ densities in the two regions and how they are correlated with the strength of two magnetospheric sources important to ion outflows: the soft electron flux and Poynting flux toward the ionosphere. The CDPS is characterized by twoâ component ions (one hot component mixed with one cold component), while the HPS ions consist of only one single hot component. Comparing the O+ density between the CDPS and HPS of the same event, the average CDPS O+ density was higher by a factor of ~2â 5. Compared to the HPS, the soft electron flux source within the CDPS was higher, consistent with the fact that the soft electron precipitation and O+ upward number fluxes observed in the ionosphere were also higher within the CDPS. In the plasma sheet, broadband ultralowâ frequency electric and magnetic field waves with the characteristics of kinetic AlfvÊn waves were often more intense within the CDPS, providing a stronger Poynting flux source. In addition, electron resonant interaction with kinetic AlfvÊn waves results in acceleration along the magnetic fields and, thus, may drive the observed soft electron precipitation. These correlations suggest that the higher soft electron precipitation and Poynting flux coming from the magnetospheric CDPS likely produce larger ionospheric O+ outflows back to the magnetosphere, thus resulting in the higher O+ density within the CDPS.Key PointsO+ densities in coldâ dense plasma sheet in the three quietâ time events were higher than those in hot plasma sheet by a factor of ~2â 5Higher soft electron fluxes in the magnetosphere and soft electron precipitation in the ionosphere in coldâ dense than hot plasma sheetMore intense kinetic Alfven waves within the CDPS, providing stronger Poynting flux downward to the ionospherePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150564/1/jgra54977_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150564/2/jgra54977.pd

    Neuroprotective Effects of Jitai Tablet, a Traditional Chinese Medicine, on the MPTP-Induced Acute Model of Parkinson’s Disease: Involvement of the Dopamine System

    Get PDF
    Jitai tablet (JTT) is a traditional Chinese medicine used to treat neuropsychiatric disorders. We previously demonstrated that JTT treatment led to increased level of dopamine transporter (DAT) in the striatum, thus indicating that JTT might have therapeutic potential for Parkinson’s disease (PD), which is characterized by dysregulated dopamine (DA) transmission and decreased striatal DAT expression. The aim of this study was to investigate the neuroprotective effect of JTT on MPTP-induced PD mice. Using locomotor activity test and rotarod test, we evaluated the effects of JTT (0.50, 0.15, or 0.05 g/kg) on MPTP-induced behavioral impairments. Tyrosine hydroxylase TH-positive neurons in the substantia nigra and DAT and dopamine D2 receptor (D2R) levels in the striatum were detected by immunohistochemical staining and/or autoradiography. Levels of DA and its metabolites were determined by HPLC. In MPTP-treated mice, behavioral impairments were alleviated by JTT treatment. Moreover, JTT protected against impairment of TH-positive neurons and attenuated the MPTP-induced decreases in DAT and D2R. Finally, high dose of JTT (0.50 g/kg) inhibited the MPTP-induced increase in DA metabolism rate. Taken together, results from our present study provide evidence that JTT offers neuroprotective effects against the neurotoxicity of MPTP and thus might be a potential treatment for PD

    Heritable Targeted Inactivation of Myostatin Gene in Yellow Catfish (Pelteobagrus fulvidraco) Using Engineered Zinc Finger Nucleases

    Get PDF
    Yellow catfish (Pelteobagrus fulvidraco) is one of the most important freshwater aquaculture species in China. However, its small size and lower meat yield limit its edible value. Myostatin (MSTN) is a negative regulator of mammalian muscle growth. But, the function of Mstn in fish remains elusive. To explore roles of mstn gene in fish growth and create a strain of yellow catfish with high amount of muscle mass, we performed targeted disruption of mstn in yellow catfish using engineered zinc-finger nucleases (ZFNs). Employing zebrafish embryos as a screening system to identify ZFN activity, we obtained one pair of ZFNs that can edit mstn in yellow catfish genome. Using the ZFNs, we successfully obtained two founders (Founder July29-7 and Founder July29-8) carrying mutated mstn gene in their germ cells. The mutated mstn allele inherited from Founder July29-7 was a null allele (mstnnju6) containing a 4 bp insertion, predicted to encode function null Mstn. The mutated mstn inherited from Founder July29-8 was a complex type of mutation (mstnnju7), predicted to encode a protein lacking two amino acids in the N-terminal secretory signal of Mstn. Totally, we obtained 6 mstnnju6/+ and 14 mstnnju7/+ yellow catfish. To our best knowledge, this is the first endogenous gene knockout in aquaculture fish. Our result will help in understanding the roles of mstn gene in fish
    • …
    corecore