257 research outputs found

    Interaction of JLP with Plk1 recruits FoxK1 to interact and form a ternary complex

    Get PDF
    JLP (JNK associated Leucine zipper protein) is a scaffolding protein, which has been shown to interact with and activate JNK/p38MAPK pathway. Its interaction with various signaling proteins is associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation and apoptosis. Here we identified a mitotic Serine/Threonine kinase, Polo like kinase 1 (Plk1), as a novel interaction partner of JLP through a mass spectrometry based approach. We show that the N-terminal domain of JLP interacts with the polo-box domain (PBD) of Plk1 in a phosphorylation-dependent manner. Our results indicate that, JLP is phospho-primed on Thr 351 residue on its Nterminus, which is recognized by the PBD of Plk1 leading to phosphorylation of JLP at additional sites. Moreover, treatment of cells with the Plk1 inhibitor, BI2536 affects the interaction demonstrating the importance of Plk1 kinase activity in this process. Since JLP is a scaffolding protein that recruits proteins to mediate specific cell signaling events, we hypothesized that the interaction of JLP with Plk1 might result in the recruitment of other proteins to this complex. To test this hypothesis, we carried out SILAC labeling of proteins in mitotic cells in the presence or absence of BI2536. Through mass-spectrometry we identified the transcription factor, FoxK1 as a Plk1-dependent JLP-interacting protein. Furthermore, we show that JLP, Plk1 and FoxK1 form a ternary complex, which occurs only during mitosis. Knockdown of Plk1 and not JLP, affected the interaction between JLP and FoxK1 indicating that the formation of the ternary complex is dependent on Plk1. FoxK1 has been previously characterized as a transcriptional repressor of cyclin dependent kinase inhibitor, p21/WAF1. We observed that knockdown of JLP in U2OS cells results in increased protein levels of FoxK1 and a reduction of p21 expression. Moreover, immunofluorescence studies in asynchronous cells showed that FoxK1 is excluded from the nucleus during mitosis. Based on our observations, we propose that formation of the ternary complex between JLP, Plk1 and FoxK1 regulates the stability and/or localization of FoxK1

    A Role for Non-Covalent SUMO Interaction Motifs in Pc2/CBX4 E3 Activity

    Get PDF
    Background: Modification of proteins by the small ubiquitin like modifier (SUMO) is an essential process in mammalian cells. SUMO is covalently attached to lysines in target proteins via an enzymatic cascade which consists of E1 and E2, SUMO activating and conjugating enzymes. There is also a variable requirement for non-enzymatic E3 adapter like proteins, which can increase the efficiency and specificity of the sumoylation process. In addition to covalent attachment of SUMO to target proteins, specific non-covalent SUMO interaction motifs (SIMs) that are generally short hydrophobic peptide motifs have been identified. Methodology/Principal Findings: Intriguingly, consensus SIMs are present in most SUMO E3s, including the polycomb protein, Pc2/Cbx4. However, a role for SIMs in SUMO E3 activity remains to be shown. We show that Pc2 contains two functional SIMs, both of which contribute to full E3 activity in mammalian cells, and are also required for sumoylation of Pc2 itself. Pc2 forms distinct sub-nuclear foci, termed polycomb bodies, and can recruit partner proteins, such as the corepressor CtBP. We demonstrate that mutation of the SIMs in Pc2 prevents Pc2-dependent CtBP sumoylation, and decreases enrichment of SUMO1 and SUMO2 at polycomb foci. Furthermore, mutational analysis of both SUMO1 and SUMO2 reveals that the SIM-interacting residues of both SUMO isoforms are required for Pc2-mediated sumoylation and localization to polycomb foci

    PIASx acts as an Elk-1 coactivator by facilitating derepression

    Full text link

    Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway.

    Get PDF
    BACKGROUND: Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques. RESULTS: Here we use a high-level narrative language in designing a computational model of the gp130/JAK/STAT signalling pathway and show that the model reproduces the dynamic behaviour of the pathway derived by biological observation. We then "experiment" on the model by simulation and sensitivity analysis to define those parameters which dominate the dynamic behaviour of the pathway. The model predicts that nuclear compartmentalisation and phosphorylation status of STAT are key determinants of the pathway and that alternative mechanisms of signal attenuation exert their influence on different timescales. CONCLUSION: The described narrative model of the gp130/JAK/STAT pathway represents an interesting case study showing how, by using this approach, researchers can model biological systems without explicitly dealing with formal notations and mathematical expressions (typically used for biochemical modelling), nevertheless being able to obtain simulation and analysis results. We present the model and the sensitivity analysis results we have obtained, that allow us to identify the parameters which are most sensitive to perturbations. The results, which are shown to be in agreement with existing mathematical models of the gp130/JAK/STAT pathway, serve us as a form of validation of the model and of the approach itself

    Three Pseudomonas putida FNR Family Proteins with Different Sensitivities to O-2

    Get PDF
    The Escherichia coli fumarate-nitrate reduction regulator (FNR) protein is the paradigm for bacterial O2-sensing transcription factors. However, unlike E. coli, some bacterial species possess multiple FNR proteins that presumably have evolved to fulfill distinct roles. Here, three FNR proteins (ANR, PP_3233, and PP_3287) from a single bacterial species, Pseudomonas putida KT2440, have been analyzed. Under anaerobic conditions, all three proteins had spectral properties resembling those of [4Fe-4S] proteins. The reactivity of the ANR [4Fe-4S] cluster with O2 was similar to that of E. coli FNR, and during conversion to the apo-protein, via a [2Fe-2S] intermediate, cluster sulfur was retained. Like ANR, reconstituted PP_3233 and PP_3287 were converted to [2Fe-2S] forms when exposed to O2, but their [4Fe-4S] clusters reacted more slowly. Transcription from an FNR-dependent promoter with a consensus FNR-binding site in P. putida and E. coli strains expressing only one FNR protein was consistent with the in vitro responses to O2. Taken together, the experimental results suggest that the local environments of the iron-sulfur clusters in the different P. putida FNR proteins influence their reactivity with O2, such that ANR resembles E. coli FNR and is highly responsive to low concentrations of O2, whereas PP_3233 and PP_3287 have evolved to be less sensitive to O2

    ELK1 Uses Different DNA Binding Modes to Regulate Functionally Distinct Classes of Target Genes

    Get PDF
    Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled

    Point of Care Nucleic Acid Testing for SARS-CoV-2 in Hospitalized Patients: A Clinical Validation Trial and Implementation Study

    Get PDF
    There is an urgent need for rapid SARS-CoV-2 testing in hospitals to limit nosocomial spread. We report an evaluation of point of care (POC) nucleic acid amplification testing (NAAT) in 149 participants with parallel combined nasal and throat swabbing for POC versus standard lab RT-PCR testing. Median time to result is 2.6 (IQR 2.3–4.8) versus 26.4 h (IQR 21.4–31.4, p < 0.001), with 32 (21.5%) positive and 117 (78.5%) negative. Cohen’s κ correlation between tests is 0.96 (95% CI 0.91–1.00). When comparing nearly 1,000 tests pre- and post-implementation, the median time to definitive bed placement from admission is 23.4 (8.6-41.9) versus 17.1 h (9.0–28.8), p = 0.02. Mean length of stay on COVID-19 “holding” wards is 58.5 versus 29.9 h (p < 0.001). POC testing increases isolation room availability, avoids bed closures, allows discharge to care homes, and expedites access to hospital procedures. POC testing could mitigate the impact of COVID-19 on hospital systems

    Ets-1 p51 and p42 isoforms differentially modulate Stromelysin-1 promoter according to induced DNA bend orientation

    Get PDF
    The Stromelysin-1 gene promoter contains a palindrome of two Ets-binding sites (EBS) that bind the p51 and p42 isoforms of the human Ets-1-transcription factor. A previous study established that full gene transactivation is associated with a ternary complex consisting of two p51 bound to the two EBS on the promoter. p42, only able to bind one of the two EBS, induces only very weak activity. Here, we investigate the mechanism by which the Stromelysin-1 promoter discriminates between p51 and p42. The differential stoichiometry of the two Ets-1 isoforms arises from the Stromelysin-1 EBS palindrome. The ternary complex requires the presence of two inhibitory domains flanking the DNA-binding domain and the ability to form an intramolecular autoinhibition module. Most importantly, the p51-ternary and the p42-binary complexes induce DNA curvatures with opposite orientations. These results establish that differential DNA bending, via p51 and p42 differential binding, is correlated with the Stromelysin-1 promoter activation process

    A Model of a MAPK•Substrate Complex in an Active Conformation: A Computational and Experimental Approach

    Get PDF
    The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-ΦA-X-ΦB, where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-ΦA-X-ΦB13. This results in a 2-fold increase in kcat/Km for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves kcat/Km by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in kcat/Km, with little apparent change in kcat. A peptide that binds to the DRS of ERK2 affects Km, but not kcat. Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction

    A positive role for PEA3 in HER2-mediated breast tumour progression

    Get PDF
    Overexpression of HER2 is associated with an adverse prognosis in breast cancer. Despite this, the mechanism of its transcriptional regulation remains poorly understood. PEA3, a MAP kinase (MAPK)-activated member of the Ets transcription factor family has been implicated in the transcriptional regulation of HER2. The direction of its modulation remains controversial. We assessed relative levels of PEA3 expression and DNA binding in primary breast cultures derived from patient tumours (n=18) in the presence of an activated MAPK pathway using Western blotting and shift analysis. Expression of PEA3 in breast tumours from patients of known HER2 status (n=107) was examined by immunohistochemistry. In primary breast cancer cell cultures, growth factors induced interaction between PEA3 and its DNA response element. Upregulation of PEA3 expression in the presence of growth factors associated with HER2 positivity and axillary lymph node metastasis (P=0.034 and 0.049, respectively). PEA3 expression in breast cancer tissue associated with reduced disease-free survival (P<0.001), Grade III tumours (P<0.0001) and axillary lymph node metastasis (P=0.026). Co-expression of PEA3 and HER2 significantly associated with rate of recurrence compared to patients who expressed HER2 alone (P=0.0039). These data support a positive role for PEA3 in HER2-mediated oncogenesis in breast cancer
    corecore