8 research outputs found

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    >

    No full text

    The Robotic Multi-Object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    No full text
    A system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs

    The Robotic Multi-Object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    No full text
    International audienceA system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs

    The Robotic Multiobject Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    Get PDF
    A system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs
    corecore