570 research outputs found

    Teaching Comprehension by Incorporating Story Grammar into a DRTA Lesson Format

    Get PDF
    This project presents a teaching procedure which should improve primarylevel reading comprehension. This procedure combines a framework of story grammar as a guide for implementing the Directed Reading Thinking Activity (DRTA) lesson format. Literature is reviewed which illustrates the effectiveness of story grammar when used to teach comprehension, and describes the effectiveness of DRTA to promote active comprehension. By combining both story grammar and DRTA, a procedure is developed and ten example lessons are produced

    Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways

    Get PDF
    In patients with chronic kidney and end-stage renal diseases, the major risk factor for progression of arterial calcification is the presence of existing (baseline) calcification. Here, we tested whether calcification of arteries is extended from calcified vascular smooth muscle cells (VSMCs) to adjacent normal cells by matrix vesicle–induced alteration of cell signaling. Matrix vesicles isolated from VSMC of rats with chronic kidney disease were co-cultured with VSMCs from normal littermates. Endocytosis of vesicles by recipient cells was confirmed by confocal microscopy. The addition of cellular matrix vesicles with characteristics of exosomes and low fetuin-A content enhanced the calcification of recipient VSMC. Further, only cellular-derived matrix vesicles induced an increase in intracellular calcium ion concentration, NOX1 (NADPH oxidase) and the anti-oxidant superoxide dismutase-2 in recipient normal VSMC. The increase in intracellular calcium ion concentration was due to release from endoplasmic reticulum and partially attributed to the activation of both NOX1 and mitogen-activated protein kinase (MEK1 and Erk1/2) signaling, since inhibiting both pathways blocked the increase in intracellular calcium ion in recipient VSMC. In contrast, matrix vesicles isolated from the media had no effect on the intracellular calcium ion concentration or MEK1 signaling, and did not induce calcification. However, media matrix vesicles did increase Erk1/2, although not to the level of cellular matrix vesicles, and NOX1 expression. Blockade of NOX activity further inhibited the cellular matrix vesicle–induced accelerated calcification of recipient VSMC, suggesting a potential therapeutic role of such inhibition. Thus, addition of cellular-derived matrix vesicles from calcifying VSMC can accelerate calcification by inducing cell signaling changes and phenotypic alteration of recipient VSMC

    Effect of ovariectomy on the progression of chronic kidney disease-mineral bone disorder (CKD-MBD) in female Cy/+ rats

    Get PDF
    Male Cy/+ rats have shown a relatively consistent pattern of progressive kidney disease development that displays multiple key features of late stage chronic kidney disease-mineral bone disorder (CKD-MBD), specifically the development of cortical bone porosity. However, progression of disease in female Cy/+ rats, assessed in limited studies, is more heterogeneous and to date has failed to show development of the CKD-MBD phenotype, thus limiting their use as a practical model of progressive CKD-MBD. Animal and human studies suggest that estrogen may be protective against kidney disease in addition to its established protective effect on bone. Therefore, in this study, we aimed to determine the effect of ovariectomy (OVX) on the biochemical and skeletal manifestations of CKD-MBD in Cy/+ female rats. We hypothesized that OVX would accelerate development of the biochemical and skeletal features of CKD-MBD in female Cy/+ rats, similar to those seen in male Cy/+ rats. Female Cy/+ rats underwent OVX (n = 8) or Sham (n = 8) surgery at 15 weeks of age. Blood was collected every 5 weeks post-surgery until 35 weeks of age, when the rats underwent a 4-day metabolic balance, and the tibia and final blood were collected at the time of sacrifice. OVX produced the expected changes in trabecular and cortical parameters consistent with post-menopausal disease, and negative phosphorus balance compared with Sham. However, indicators of CKD-MBD were similar between OVX and Sham (similar kidney weight, plasma blood urea nitrogen, creatinine, creatinine clearance, phosphorus, calcium, parathyroid hormone, and no cortical porosity). Contrary to our hypothesis, OVX did not produce evidence of development of the CKD-MBD phenotype in female Cy/+ rats

    Adverse mandibular bone effects associated with kidney disease are only partially corrected with bisphosphonate and/or calcium treatment

    Get PDF
    Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIBackground/Aims: Patients with chronic kidney disease (CKD) have high prevalence of periodontal disease that may predispose to tooth loss and inflammation. The goal of this study was to test the hypotheses that a genetic rat model of progressive CKD would exhibit altered oral bone properties and that treatment with either bisphosphonates or calcium could attenuate these adverse changes. Methods: At 25 weeks of age, rats were treated with zoledronate, calcium gluconate, or their combination for 5 or 10 weeks. Mandible bone properties were assessed using micro-computed tomography to determine bone volume (BV/TV) and cementenamel junction to alveolar crest distance (CEJ-AC). Results: Untreated CKD animals had significantly lower BV/TV at both 30 (-5%) and 35 (-14%) weeks of age and higher CEJ-AC (+27 and 29%) compared to normal animals. CKD animals had significantly higher PTH compared to normal animals yet similar levels of C-reactive protein. Zoledronate-treatment normalized BV/TV over the first 5 weeks but this benefit was lost by 10 weeks. Calcium treatment, alone or in combination with zoledronate, was effective in normalizing BV/TV at both time points. Neither zoledronate nor calcium was able to correct the higher CEJ-AC caused by CKD. Calcium, but not zoledronate, significantly reduced serum parathyroid hormone (PTH) while neither treatment affected C-reactive protein. Conclusions: 1) this progressive animal model of chronic kidney disease shows a clear mandibular skeletal phenotype consistent with periodontitis, 2) the periodontitis is not associated with systemic inflammation as measured by C-reactive protein, and 3) reducing PTH has positive effects on the mandible phenotype.This work was supported by NIH grant (AR058005). We would like to thank Dr. Xianming Chen, Mr. Alex Carr and Mr. Drew Brown for their assistance with the biochemical assays, breeding colony and micro CT scanning/analysis, respectively

    Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells

    Get PDF
    Calcium channel activity in vascular smooth muscle cells is a critical component during vascular calcification and formation of matrix vesicles. Here, we examined whether the blockade of L-type calcium channels inhibits these functions. Bovine vascular smooth muscle cells or rat aorta organ cultures were incubated in media known to promote calcification and treated with the L-type calcium channel inhibitors verapamil, nifedipine, or nimodipine. The phenylalkylamine, verapamil, significantly decreased calcification of the vascular smooth muscle cells and rat aorta, in a dose-dependent manner, whereas the dihydropyridines, nifedipine and nimodipine, had no effect. Furthermore, verapamil, but not nifedipine, significantly decreased the alkaline phosphatase activity of bovine vascular smooth muscle cells. Verapamil pretreatment of the cells also inhibited matrix vesicle alkaline phosphatase activity and reduced the ability of these matrix vesicles to subsequently calcify on a type I collagen extracellular matrix scaffold. As L-type channels are blocked by verapamil and dihydropyridines, we suggest that verapamil inhibits vascular smooth muscle mineralization and matrix vesicle activity by mechanisms other than the simple blockade of this calcium channel activity

    Enhancing Social Skills in Adolescents with High Functioning Autism using Motor-based Role-play Intervention

    Get PDF
    The purpose of this pilot study was to collect pilot data evaluating whether a motor-based role-play intervention using a canine animal assistant can enhance social skill use in two adolescents with HFA. A single subject ABA design across two participants was used. The intervention consisted of four 1-hour sessions over 4 weeks. The quality of social interaction was measured by the Evaluation of Social Interaction (ESI) administered at baseline and the 3-month probe. Frequency of targeted social skill use was measured during baseline, intervention, and probe phases. Participant 1 experienced statistically significant increases in both ESI scores (p = .012, t = -5.488) from baseline to the 3-month probe. Participant 2 also experienced a statistically significant increase in ESI scores from baseline to probe (p = .002, t = -10.167), but he was unable to fully maintain these gains at the 3-month probe. This pilot study’s findings suggest that the intervention produced positive effects in both participants and warrant further investigation

    RhoA/Rho kinase (ROCK) alters fetuin-A uptake and regulates calcification in bovine vascular smooth muscle cells (BVSMC)

    Get PDF
    RhoA/Rho kinases (ROCK) play a critical role in vascular smooth muscle cell (VSMC) actin cytoskeleton organization, differentiation, and function and are implicated in the pathogenesis of cardiovascular disease. We have previously determined that an important step in the regulation of calcification is fetuin-A endocytosis, a process that is dependent on changes in the cytoskeleton, which, in turn, is known to be affected by the RhoA/ROCK signaling pathway. In the present study, bovine VSMC (BVSMC) were treated with the ROCK inhibitor Y-27632 or transfected with ROCK small interfering (si) RNA to knock down ROCK expression. Both conditions resulted in reduced actin stress fibers and increased Cy5-labeled fetuin-A uptake. Inhibition of ROCK by Y-27632 or siRNA also significantly increased BVSMC alkaline phosphatase (ALP) activity and calcification of BVSMC and rat aorta organ cultures. Cells were then incubated in calcification media in the presence or absence of Y-27632 and matrix vesicles (MV) isolated by collagenase digestion. These MV, isolated from BVSMC incubated with Y-27632, had increased ALP activity and increased ability of MV to subsequently calcify collagen by 66%. In contrast, activation of RhoA, which is upstream of ROCK, by transfecting plasmids encoding the dominant active Rho GTPase mutant (Rho-L63) led to decreased fetuin-A uptake and reduced calcification in BVSMC. These results demonstrate that the RhoA/ROCK signaling pathway is an important negative regulator of vascular calcification

    N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder

    Get PDF
    Individuals with chronic kidney disease have elevated levels of oxidative stress and are at a significantly higher risk of skeletal fracture. Advanced glycation end products (AGEs), which accumulate in bone and compromise mechanical properties, are known to be driven in part by oxidative stress. The goal of this study was to study effects of N-acetylcysteine (NAC) on reducing oxidative stress and improving various bone parameters, most specifically mechanical properties, in an animal model of progressive CKD. Male Cy/+ (CKD) rats and unaffected littermates were untreated (controls) or treated with NAC (80 mg/kg, IP) from 30 to 35 weeks of age. Endpoint measures included serum biochemistries, assessments of systemic oxidative stress, bone morphology, and mechanical properties, and AGE levels in the bone. CKD rats had the expected phenotype that included low kidney function, elevated parathyroid hormone, higher cortical porosity, and compromised mechanical properties. NAC treatment had mixed effects on oxidative stress markers, significantly reducing TBARS (a measure of lipid peroxidation) while not affecting 8-OHdG (a marker of DNA oxidation) levels. AGE levels in the bone were elevated in CKD animals and were reduced with NAC although this did not translate to a benefit in bone mechanical properties. In conclusion, NAC failed to significantly improve bone architecture/geometry/mechanical properties in our rat model of progressive CKD

    An Alternative Undergraduate Teacher Preparation Program: A Comprehensive One-to-One iPad Initiative Model

    Get PDF
    To date, little literature has been published on how an alternative undergraduate teacher preparation program infuses mobile devices such as the iPad and its applications, model classrooms, and a high-tech computer lab to prepare teacher candidates. Preparing teacher candidates to generalize technological skills is most effective when it is hands on, using the varied devices and support available to them. Meaningful instruction, application and maintenance of technological usage is the key to 21st century teaching and learning but it will not occur without a designed plan of action or model. This article focuses on the prominence of the use of iPads for teacher candidates in higher education and its potential impact on the learning of students with varying backgrounds and abilities in public schools. Further, it provides conceptual, systematic, comprehensive, and ready-to-use three phases of an existing one-to-one iPad initiative model at a southeast institution of higher education in the United States of America. Keywords: iPads in Higher Education, Mobile Learning, Pre-service Teachers, Teacher Candidates, Alternative Teacher Preparation Progra

    Changes in skeletal collagen crosslinks and matrix hydration in high and low turnover chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD. INTRODUCTION: Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD. METHODS: At 35 weeks of age (>75 % reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a 1H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests. RESULTS: Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (-21 % each), lower bw (-10 %), higher PE (+71 %), and higher pw (+46 %) compared to NL. Animals with low turnover had higher Dpd, PE (+71 %), and bw (+7 %) along with lower pw (-60 %) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending. CONCLUSIONS: These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.This work was supported by National Institutes of Health grants AR58005 (SM), DL100093 (CN), AR063157 (JSN), and the Indiana Clinical Translational Science Institute grant TR000162 (CN). The cross-link analysis is the result of work supported with resources and the use of facilities at the VA Tennessee Valley Healthcare System. All authors were involved in the design, conduct and analyses of the study. The authors would like to thank Drew Brown, Shannon Roy, and Kali O’Neill for technical assistance. We would also like to acknowledge the late Dr. Vincent H. Gattone II (1951-2013), who was instrumental in developing this animal model
    • …
    corecore