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ABSTRACT 

Background/Aims:  Patients with chronic kidney disease (CKD) have high prevalence of 

periodontal disease that may predispose to tooth loss and inflammation.   The goal of this study 

was to test the hypotheses that a genetic rat model of progressive CKD would exhibit altered 

oral bone properties and that treatment with either bisphosphonates or calcium could attenuate 

these adverse changes. Methods: At 25 weeks of age, rats were treated with zoledronate, 

calcium gluconate, or their combination for 5 or 10 weeks.  Mandible bone properties were 

assessed using micro-computed tomography to determine bone volume (BV/TV) and cement-

enamel junction to alveolar crest distance (CEJ-AC).  Results:  Untreated CKD animals had 

significantly lower BV/TV at both 30 (-5%) and 35 (-14%) weeks of age and higher CEJ-AC (+27 

and 29%) compared to normal animals.  CKD animals had significantly higher PTH compared to 

normal animals yet similar levels of C-reactive protein.  Zoledronate-treatment normalized 

BV/TV over the first 5 weeks but this benefit was lost by 10 weeks. Calcium treatment, alone or 

in combination with zoledronate, was effective in normalizing BV/TV at both time points.  Neither 

zoledronate nor calcium was able to correct the higher CEJ-AC caused by CKD.   Calcium, but 

not zoledronate, significantly reduced serum parathyroid hormone (PTH) while neither treatment 

affected C-reactive protein. Conclusions: 1) this progressive animal model of chronic kidney 

disease shows a clear mandibular skeletal phenotype consistent with periodontitis, 2) the 

periodontitis is not associated with systemic inflammation as measured by C-reactive protein, 

and 3) reducing PTH has positive effects on the mandible phenotype. 
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INTRODUCTION 

Chronic kidney disease (CKD) is often accompanied by disturbances in mineral metabolism 

which are classified as their own clinical entity known as CKD-mineral and bone disorder (CKD-

MBD) (1).  CKD-MBD is hallmarked by altered bone remodeling and loss of bone mass 

throughout the skeleton, including the oral cavity (2,3).    Periodontal disease, including gingivitis 

and periodontitis are more prevalent in CKD populations compared to healthy individuals (4-6) 

and have been documented in rodent models of CKD (7).  Peridontitis is associated with 

alveolar bone loss, thought to be secondary to local inflammation and change in the bacterial 

environment.  Secondary hyperparathyroidism is common in CKD, and oral bone remodeling is 

similar to that of cortical bone remodeling.  Therefore, the etiology of periodontitis in CKD may 

be due to inflammation and/or secondary hyperparathyroidism (8).  If the latter is true, then 

therapies that lower PTH may also have a beneficial effect, as may other bone-sparing 

treatments that reduce remodeling such as bisphosphonates. 

Bisphosphonates have clear efficacy in reducing bone loss in non-CKD patients (9). 

International clinical practice guidelines recommend bisphosphonates use in patients with CKD 

stages 1-3 and normal parathyroid hormone levels, but recommended not using 

bisphosphonates in patients with CKD stages 3-5 with biochemical evidence 

hyperparathyroidism (1).  The main concern for this latter population is the potential of severely 

suppressed bone turnover although the limited clinical data does not universally support such 

an effect (10-13).  Recently, using an animal model of progressive kidney disease we have 

documented that the reduction in remodeling of the tibia with zoledronic acid is similar that that 

of normal animals (14) although this dose failed to normalize biomechanical properties. 
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The effects of bisphosphonates on the oral skeleton have been extensively reviewed 

and discussed in recent years do to the condition of osteonecrosis of the jaw (15,16).  Although 

cases of ONJ have been documented in persons treated with oral bisphosphonates, the vast 

majority of cases have occurred in association with high dose intravenous bisphosphonates.  

Indeed, oral bisphosphonates have actually been shown to benefit the oral skeleton.  Oral 

alendronate and risedronate have each showed efficacy in attenuating periodontal-induced 

bone loss in the general population (17,18). 

The goal of this study was to characterize the oral cavity skeletal changes in this 

progressive kidney disease animal model.  Specifically, we aimed to test the hypothesis that 

skeletal properties in the oral cavity would be adversely affected in animals with CKD and that 

bisphosphonates would attenuate these effects.  We also aimed to understand the respective 

roles of hyperparathyroidism versus inflammation in these periodontal changes. 

METHODS 

Animal model and experimental design.  A rat colony with an autosomal dominant polycystic 

kidney disease, maintained at the Indiana University School of Medicine, were used for this 

study.  Male heterozygous rats (Cy/+) develop characteristics of CKD (azotemia, anemia, 

hypertension, secondary hyperparathyroidism) around 10 weeks of age.  BUN analyses were 

conducted in all animals at 10 weeks of age and animals with values over 40 mg/dl were 

considered to have CKD.  These animals have a progressive rise in PTH as they age, (19-21), 

and all animals had elevations in PTH at the time of treatment.. The normal littermates of the 

colony were used as non-affected (normal) controls. 

At 25 weeks of age (roughly a glomerular filtration rate of 25 ml/min, equivalent to 

human stage 4 CKD), animals were assigned to treatment groups within two different 

experiments that differed somewhat in drug dosages and also treatment duration (Figure 1). 
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Experiment one: CKD animals were treated with a single dose of vehicle, ZOL (one group at 20 

and another group at 100 µg/kg BW) or given 3% calcium gluconate in the drinking water.  

Normal animals injected with either vehicle (saline) or a single intraperotenal injection of 

zoledronic acid (ZOL, 100 µg/kg body weight) served as controls.    These single doses of ZOL 

have been shown to significantly suppress remodeling in the tibia in this model over the five 

week timeframe, and this dose of calcium significantly lowers PTH (14).  Animals were 

sacrificed at 30 weeks of age (5 weeks after treatment initiation). 

Experiment two:   CKD animals were treated with a single dose of vehicle, ZOL (20 µg/kg BW), 

calcium gluconate, or calcium gluconate plus ZOL.  Normal animals injected with either vehicle 

(saline) or a single intraperotenal injection of zoledronic acid (ZOL, 20 µg/kg body weight) 

served as controls.  Animals were sacrificed at 35 weeks of age (10 weeks after treatment 

initiation) 

In both studies, all animals were euthanized by an overdose of sodium pentobarbital.  At 

necropsy, blood was collected by cardiac puncture. The right hemi-mandible was wrapped in 

saline-soaked gauze and frozen for imaging. All procedures were reviewed and approved by the 

Indiana University School of Medicine Institutional Animal Care and Use Committee. 

Computed tomography. Morphological parameters of the mandible were assessed using high-

resolution micro-CT (Skyscan 1172).  Bones were wrapped in parafilm to prevent drying during 

the scanning. Scans were obtained using an x-ray source, set at 60kV with a 12-µm pixel size. 

Images were reconstructed and analyzed using standard Skyscan software (NRecon and CTAn, 

respectively). A single slice from the central region of the first mandible molar was analyzed for 

total bone volume (excluding the molar and incisor) and lingual cementum-enamel to alveolar 

bone crest distance (CEJ-AC) as previously described (22,23).  This distance is roughly 
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equivalent to the clinically assessed periodontal pocket, which is believed the nidus of 

inflammation (Figure 2).   

Biochemical analyses:.  Serum intact PTH, C-reactive protein, and TNFalpha were measured by 

ELISA (Alpco, Salem NH) according to the manufacturer's instruction.  Calcium and 

phosphorous were measured from plasma using colorimetric methods (14). 

Statistics.  All analyses were run using SAS software.  All data were compared using a one-way 

ANOVA with Fisher’s LSD post-hoc tests when appropriate.  A p value of < 0.05 was used to 

determine statistical significance.  Data are presented as mean and standard error. 

RESULTS 

Detailed long bone tissue mass and biochemical data from experiment one (14) and two (24) 

have been previously published.  In both experiments one and two, there was no significant 

difference among groups for body mass within either experiment while all CKD animals had 

significantly larger kidney masses and elevated BUN indicative of progressive kidney disease. 

There were no significant differences in serum calcium or phosphorous at sacrifice in 

experiment 1 (30 weeks) (14).  However, in experiment two (treated for 10 weeks), phosphorus 

was lower and calcium was higher in the calcium treated CKD animals sacrificed at 35 weeks 

compared to other groups.  At both time points PTH was significantly higher in CKD animals (3x 

higher at 30 wks; 13x higher at 35 wks) while C-reactive protein was not different at either time 

point (Tables 1 and 2).  TNFalpha levels were undetectable in all animals.   In both experiments, 

the calcium treated animals had significant suppression of PTH compared to control treated 

CKD animals and Normal animals.   Thus, the animals had progressive kidney disease and 

secondary hyperparathyroidism.  Similar to human disease, the animals developed progressive 

secondary hyperparathyroidism with frank hyperphosphatemia late in the disease course.  
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Treatment with calcium suppressed PTH and lowered phosphorus, but also increased calcium 

levels when the treatment was given for 10 weeks. 

Across both experiments, CKD-vehicle animals displayed a clear and consistent 

mandibular phenotype compared to normal-vehicle animals (Figures 3).  Mandible bone 

volume/tissue volume was 6% lower and cementum-enamel junction to alveolar crest (CDJ-AC) 

distance 27% larger in the CKD animals compared to normal animals at 30 weeks of age. At 35 

weeks of age, BV/TV was 14% lower and CDJ-AC 30% higher in CKD animals compared to 

normal.   Zoledronic acid did not significantly alter either periodontal assessment in normal 

animals of either experiment (Figure 3).  Zoledronic acid treatment in experiment 1 (5 weeks of 

treatment) significantly improved trabecular BV/TV, at both doses with no dose response, 

relative to CKD-VEH.  Conversely, there was no effect of ZOL on BV/TV relative to CKD-VEH in 

experiment two (10 weeks of treatment and more severe disease).  ZOL was ineffective in 

normalizing CEJ-AC distance in both experiments PTH levels (Table 1) were significantly lower 

with the high dose, but not low dose, ZOL in experiment 1 relative to CKD-VEH animals yet was 

still 2x higher than normal.  Low dose ZOL in experiment 2 significantly reduced PTH relative to 

CKD-VEH yet it remained nearly 10-fold higher than normal.  C-reactive protein was significantly 

lower in ZOL-treated animals of experiment two relative to CKD-VEH for unclear reasons. 

Calcium supplementation normalized BV/TV in both experiments (Figure 3).  Combining 

calcium with zoledronic acid in experiment two produced BV/TV values comparable to calcium 

alone.  In experiment one, CEJ-AC was not different from normal but was also not different from 

CKD-VEH.  In experiment two, neither calcium alone nor calcium combined with zoledronic acid 

affected CDJ-AC relative to CKD-VEH. Calcium, either alone or in combination with ZOL 

significantly lowered serum PTH to below normal vehicle levels.  Calcium alone, in experiment 

two, resulted in C-reactive protein levels that were significantly higher than normal (Table 1).  In 
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the CKD animals, the PTH level was inversely correlated with the BV/TV (r = -0.77, p < 0.001), 

although not significantly correlated with the CEJ-AC. 

DISCUSSION 

Previous work describing the skeletal properties in this progressive, genetically-based CKD 

animal model has focused on the long bones and has documented increased bone remodeling 

rates, loss of bone mass, and reduced biomechanical properties (14,21,25).  Due to the 

increasingly prevalent recognition of dental co-morbidities associated with CKD (5,6) and 

recent documentation of mandibular phenotype in a mouse model of CKD (7), we examined 

properties of the mandible that are known to be factors in the etiology of periodontal disease in 

our model.  Our results demonstrate that this animal model that develops progressive CKD, has 

a mandible phenotype consistent with clinical periodontal disease.  Specifically, vehicle-treated 

CKD animals had a modest, but significantly lower mandible bone volume in the region of the 

first mandible molar compared to normal vehicle animals.  CKD animals also had significantly 

greater cementum-enamel junction to alveolar crest distance compared to normal animals, 

indicative of alveolar crest bone resorption.  These skeletal differences existed in the context of 

significantly higher serum PTH but no difference in serum C-reactive protein, compared to 

normal animals.  The morphological changes observed in this CKD animal model is consistent 

with those shown previously for both experimentally- (ligature placement) and 

pharmacologically-induced periodontal disease (26,27) as well as those for another animal 

model of CKD (7).   Alterations in facial bones, including the mandible, have also previously 

been documented in a small cohort of dialysis patients where PTH is elevated (28). 

Bisphosphonates as a therapy for oral bone loss have been explored, and shown to be 

clinically effective in non-CKD populations(17,18).  In our study, zoledronate treatment, at both 
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low and high doses, corrected difference in mandible bone volume in the short-term (5 week 

experiment) but not the long term (10 week experiment).  Enhanced bone volume was expected 

given that the mechanism of action for bisphosphonates is to reduce bone remodeling.  These 

positive effects are consistent with the effects of zoledronate at other skeletal sites in these 

same animals (14), as well as a wide-array of other animal model conditions of bisphosphonate 

treatment (29).  The inability of zoledronic acid to normalize bone volume in the 10 week study 

was unexpected.  Previous work has shown a single 20 µg/kg dose of zoledronic acid 

maintained beneficial effects on tibia BV/TV bone up to eight months post-dose in rats (30).  We 

interpret this as evidence that CKD alters the long-term efficacy of a single zoledronic acid dose, 

likely related to the high PTH that leads to resorption of bone that is covered with the zoledronic 

acid, leading to less efficacy of the drug. This could be potentially overcome by more frequent 

dosing – although a theoretical concern exists that with compromised renal function, increased 

dosing will lead to increased accumulation of drug in the skeleton and the potential adverse 

effects this could manifest. 

The clinical utility of bisphosphonates for treating/preventing oral bone loss has been 

curtailed by osteonecrosis of the jaw, a rare but significant side effect of potent remodeling 

suppressive drugs (31).  The mechanism underlying osteonecrosis of the jaw remains unclear 

and although dramatic suppression of remodeling appears to play a role there are also a 

number of other co-factors that likely are involved (16).    Pre-clinical data show that 

bisphosphonates do not suppress remodeling differently in a high-turnover model of CKD 

compared to unaffected normal animals (14).  This would suggest that risk of osteonecrosis of 

the jaw, if it’s related to level of turnover suppression, would not be expected to be higher in 

patients with high-turnover kidney disease. 

The adverse effects of CKD on the cementum-enamel junction to the alveolar crest 

distance were not altered with zoledronate treatment.  Trabecular and intracortical bone 
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envelopes undergo bone remodeling, the coupled process of resorption followed by formation, 

similar to that in long bones. In these situations, inhibition of remodeling with bisphosphonates 

results in a small but meaningful increase in bone mass because 1) those sites that were in the 

process of remodeling fill in and 2) no new remodeling sites are initiated.  The cellular activity on 

the alveolar bone surfaces is mostly modeling, the process of resorption or formation (but not 

both) at a given spatial location.  High PTH induced by CKD potently stimulates resorption and 

this is likely the mechanism underlying the greater CEJ-AC in CKD animals compared to normal 

(7,28).  Suppression of osteoclast-based modeling, as occurs with zoledronic acid, would slow 

the increase of CEJ-AC distance, but would not be expected to reverse it.  Non CKD-models of 

periodontal disease have documented that when bisphosphonate treatment is initiated before 

the induction of periodontal disease the CEJ-AC distance can be maintained (22).  We interpret 

the lack of effect in our study as evidence that the increase in CEJ-AC occurred prior to the 

zoledronic acid dosing (25 weeks of age).  Given that PTH levels were already elevated at this 

age, this is a plausible hypothesis. Modifications of CEJ-AC, a clinically-relevant parameter, 

would therefor necessitate either earlier treatment with an anti-resorptive or treatment with an 

anabolic therapy, such as parathyroid hormone (32) or anti-sclerostin antibody (33). 

 Calcium supplementation, utilized clinically to lower phosphorus when taken with meals, 

and reduce elevated PTH, provided a prolonged effect on mandible BV/TV maintenance.  At 

both 5 and 10 week time points, animals treated with calcium had BV/TV that was comparable 

to normal animals, suggesting the control of PTH has a greater effect on bone preservation than 

the potent but acute treatment with bisphosphonate.    Yet similar to zoledronic acid, calcium 

supplementation was not able to restore CEJ-AC distance, again likely because changes to this 

parameter occurred prior to the initiation of treatment. 

In vehicle-treated animals, serum PTH was significantly higher in CKD animals 

compared to normal while there was no difference in C-reactive protein, an outcome measure 
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related to inflammation (34). Further supporting that systemic inflammation was not an etiology 

in the changes were the undetectable levels TNF-alpha.     In the calcium treated groups, serum 

PTH and bone volume were maintained; in contrast PTH was not controlled, nor bone volume 

maintained in animals treated with zoledronate.   These observations confirm previous 

observations that hyperparathyroidism was associated with mandibular bone changes in a 

different animal model of CKD and in a small cohort of dialysis patients (7,28).  We also found a 

significant negative correlation between PTH and bone volume, similar to that observed in the 

mouse model of CKD-MBD (7).  Inflammation, globally assessed by CRP, is also associated 

with periodontal disease.  However, inflammation may be a result, rather than a cause of 

periodontitis.  This induced systemic inflammation may be a cause of CKD, rather than CKD 

itself leading to periodontal disease (8,35).  In the present study, the effects of treatment on C-

reactive protein were modest and did not track with response of bone.  Based on these 

outcomes and measurements, we conclude that PTH, not systemic inflammation, drives the 

bone alterations observed in this CKD model.  This highlights the need to control PTH in order 

to reign in the oral skeletal manifestations of the disease in addition to the long bone changes. 

These results should be interpreted in the context of study limitations.  Our study did not 

include baseline controls, animals that are sacrificed at the time of treatment initiation.  This 

would have allowed us to determine if measures such as CEJ-AC were indeed different at the 

start. We also did not have a group of animals that were dosed more frequently with zoledronic 

acid (in experiment 2).  This would have directly addressed whether controlling PTH was 

essential to preserving bone volume or if simply controlling osteoclasts through repeated dosing 

would also have been effective.  We also did not have normal animals treated with calcium or 

calcium plus zoledronic acid as the main reason to include the normal animals was to define the 

basal phenotype of the rat model. 
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In conclusion we have documented that this model of progressive chronic kidney 

disease presents a skeletal phenotype in the oral cavity consistent with clinically observed 

periodontal disease and that zoledronate and calcium each have mixed effects as a treatment 

for correcting this phenotype.  We also provide evidence that the bone loss of periodontal 

disease is related more to PTH levels than inflammation markers. 
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FIGURE LEGENDS 

Figure 1. Experimental design.  All animals began treatment at 25 weeks of age.  Experiment 1 

lasted five weeks and experiment 2 lasted ten weeks.  Animals were dosed with a single bolus 

of saline vehicle (VEH) or zoledronic acid (ZOL).  Animals in calcium groups were fed 3% 

calcium gluconate in their water throughout the experimental duration. 

Figure 2.  CT-based morphological assessment of mandible bone.  Bone volume per tissue 

volume (BV/TV) was calculated as the fraction of tissue that was mineralized within the entire 

section, excluding the dental tissue (area encompassed by the white dotted line).  The 

cementum-enamel junction to alveolar crest distance was calculated at the lingual surface as 

noted by the arrow. 

Figure 3. Effects of chronic kidney disease and its treatment with bisphosphonate, calcium, or 

their combination on mandible trabecular bone volume (A, C) and cementum-enamel junction to 

alveolar crest distance (B, D).  Dotted line notes level of normal-vehicle animals for reference 

across groups.  VEH = vehicle, ZOL = zoledronate, Ca = calcium.  Data as mean ± SE. p < 0.05 

versus normal vehicle (#), CKD-Vehicle (*), and (^) CKD-ZOL. 
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TABLE 1.  Serum biochemistry (30 weeks of age – 5 weeks of treatment) 

Normal CKD 1way 
ANOVA 

Vehicle ZOL 
100 µg 

Vehicle ZOL 
20 µg 

ZOL 
100 µg 

Ca 

Parathyroid 
hormome, 
pg/ml 
(range) 

251 ± 34 
(104-382) 

233 ± 16 
(174-303) 

853 ± 227 # 
(445-1870) 

593 ± 95 # 
(238-950) 

558 ± 203 * 
(217-4662) 

162 ± 69 *^ 
(22-420) 

0.0009 

Serum c-
reactive 
protein, 
µg/ml 

375 ± 15 376 ± 15 371 ± 8 353 ± 21 382 ± 20 350 ± 9 0.655 

Data as mean ± SE. p < 0.05 versus normal vehicle (#), CKD-Vehicle (*), and (^) CKD-ZOL. 

TABLE 2.  Serum biochemistry (35 weeks of age – 10 weeks of treatment) 

Normal CKD 1way 
ANOVA Vehicle ZOL 

20 µg 
Vehicle ZOL 

20 µg 
Ca Ca + ZOL 

Parathyroid 
hormome, 
pg/ml 
(range) 

230 ± 50 * 
(108-613) 

213 ± 17 * 
(155-304) 

3031 ± 332 # 
(972-4760) 

2119 ± 574 *# 
(109-4769) 

55 ± 14 *^ 
(20-4760) 

69 ± 20 *^ 
(10-176) 

<0.0001 

Serum c-
reactive 
protein, 
µg/ml 

459 ± 21 449 ± 17 519 ± 26 427 ± 16 * 528 ± 29 # 525 ± 29 0.0072 

Data as mean ± SE. p < 0.05 versus normal vehicle (#), CKD-Vehicle (*), and (^) CKD-ZOL. 
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