1,030 research outputs found

    Primary oral myiasis : a case report

    Get PDF
    Myiasis is the infestation of live human and vertebrate animal with dipterous larvae which feed on the host?s dead or living tissue. A case of oral myiasis in the maxillary anterior region in a 42-year-old female with neurologic deficit caused by the larvae (maggots) of Musca Nebulo (Family Diptera) is reported. The treatment consisted of manual removal of the larvae by topical application of turpentine oil, oral therapy with ivermectin and surgical debridement of the oral wound

    Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells

    Get PDF
    Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo

    Plant invasions along roads: a case study from central highlands, India

    Get PDF
    Road sides provide suitable conditions for the establishment and growth of non-native species. The phenomenon of non-native species spread through roads has further increased due to rapid anthropogenic developments. Here we intend to investigate the status of native and nonnative species and how the species richness and diversity change in a perpendicular road transect across the three different road use types in the central highlands of India. Presence of 55 nonnative species was recorded, of the total 71 species along the road sides. Non-native species richness significantly increased with increasing road use type. Although, the species diversity significantly decreased from road verges to the forest interior in all the road use types. Indicating the role of non-native propagule spread through the roads into the interior forest landscapes. The study gives a management implication, to restrict the non-native species spread from the road sides to the forest interior, irrespective of road use types.Centre of Excellence for Invasion Biolog

    Identification of a novel N-acetylmuramic acid (MurNAc) transporter in Tannerella forsythia.

    Get PDF
    Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide-repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia. coli MurQ etherase involved in the conversion of MurNAc-6P to GlcNAc-6P. The genes encoding these components were identified on a three gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually rescued the inability of an E. coli mutant deficient in the PTS (phosphotransferase system)-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria. IMPORTANCE: In this study we report the identification of a novel transporter for peptidoglycan amino-sugar N-acetylmuramic acid (MurNAc) in the periodontal pathogen T. forsythia It has been known since the late 1980s that T. forsythia is a MurNAc auxotroph relying on environmental sources for this essential sugar. Most sugar transporters, and the MurNAc transporter MurP in particular require a PTS phosho-relay to drive the uptake and concurrent phosphorylation of the sugar through the inner membrane in Gram-negative bacteria. Our study uncovered a novel type of PTS-independent MurNAc transporter, and although so far unique to T. forsythia, may be present in a range of bacteria both of the oral cavity and gut especially of the phylum Bacteroidetes

    Mesoscale flux-closure domain formation in single-crystal BaTiO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses. Includes supplemental materials

    Draft Genome Sequences of Three Clinical Isolates of Tannerella forsythia Isolated from Subgingival Plaque from Periodontitis Patients in the United States.

    Get PDF
    We report the genome sequences of three clinical isolates of Tannerella forsythia from the subgingival plaque of periodontitis patients attending clinics at the School of Dental Medicine, University at Buffalo. The availability of these genome sequences will aid the understanding of the pathogenesis of periodontitis

    Protein-linked glycans in periodontal bacteria : prevalence and role at the immune interface

    Get PDF
    Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens

    A standardized response to biological invasions

    Get PDF
    Centre of Excellence for Invasion Biolog

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} \oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm \oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure
    corecore