2,011 research outputs found

    Cooperative RecA clustering: the key to efficient homology searching

    Get PDF
    The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly cooperative, involving multiple phases. Initially, the process is dominated by a rapid 'association' phase, where multiple filaments interact on the same dsDNA simultaneously. This cooperative nature is reconciled by the observation of localized dense clusters of pre-synaptic filaments interacting with the observed dsDNA molecules. This confinement of reactive species within the vicinity of the dsDNA, is likely to play an important role in ensuring that a high interaction rate between the nucleoprotein filaments and the dsDNA can be achieved. This is followed by a slower 'resolution' phase, where the synaptic joints either locate sequence homology and progress to a post-synaptic joint, or dissociate from the dsDNA. Surprisingly, the number of simultaneous synaptic joints decreases rapidly after saturation of the dsDNA population, suggesting a reduction in interaction activity of the RecA filaments. We find that the time-scale of this decay is in line with the time-scale of the dispersion of the RecA filament clusters, further emphasising the important role this cooperative phenomena may play in the RecA-facilitated homology search

    Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles

    Get PDF
    Zn (1-x)Fe (x)O (1+0.5x) (x = 0.5-5 mol) nanoparticles were synthesized by a low temperature solution combustion route. The structural characterization of these nanoparticles by PXRD, SEM and TEM confirmed the phase purity of the samples and indicated a reduction in the particle size with increase in Fe content. A small increase in micro strain in the Fe doped nanocrystals is observed from W-H plots. EPR spectrum exhibits an intense resonance signal with effective g values at g â 2.0 with a sextet hyperfine structure (hfs) besides a weak signal at g â 4.13. The signal at g â 2.0 with a sextet hyperfine structure might be due to manganese impurity where as the resonance signal at g â 4.13 is due to iron. The optical band gap E g was found to decrease with increase of Fe content. Raman spectra exhibit two non-polar optical phonon (E 2) modes at low and high frequencies at 100 and 435 cm -1 in Fe doped samples. These modes broaden and disappear with increase of Fe dopant concentration. TL measurements of γ-irradiated (1-5 kGy) samples show a main glow peak at 368°C at a warming rate of 6.7°Cs -1. The thermal activation parameters were estimated from Glow peak shape method. The average activation energy was found to be in the range 0.34-2.81 eV. © 2012 Elsevier B.V. All rights reserved

    Non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary

    Full text link
    We have discussed non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary. By photogravitational we mean that both primaries are radiating. We normalised the Hamiltonian using Lie transform as in Coppola and Rand (1989). We transformed the system into Birkhoff's normal form. Lie transforms reduce the system to an equivalent simpler system which is immediately solvable. Applying Arnold's theorem, we have found non-linear stability criteria. We conclude that L6L_6 is stable. We plotted graphs for (ω1,D2).(\omega_1, D_2). They are rectangular hyperbola.Comment: Accepted for publication in Astrophysics & Space Scienc

    Classes of exact Einstein-Maxwell solutions

    Full text link
    We find new classes of exact solutions to the Einstein-Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein-Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.Comment: 16 pages, To appear in Gen. Relativ. Gravi

    Combined ion and atom trap for low temperature ion-atom physics

    Full text link
    We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently of each other. The simultaneous operation of both is then described and experimental signatures of the effect of the ions and cold-atoms on each other are presented. In conclusion the use of such an instrument for several problems in physics and chemistry is briefly discussed.Comment: 24 pages, 13 figures. Figures Fixe

    How backscattering off a point impurity can enhance the current and make the conductance greater than e^2/h per channel

    Full text link
    It is well known that while forward scattering has no effect on the conductance of one-dimensional systems, backscattering off a static impurity suppresses the current. We study the effect of a time-dependent point impurity on the conductance of a one-channel quantum wire. At strong repulsive interaction (Luttinger liquid parameter g<1/2), backscattering renders the linear conductance greater than its value e^2/h in the absence of the impurity. A possible experimental realization of our model is a constricted quantum wire or a constricted Hall bar at fractional filling factors nu=1/(2n+1) with a time-dependent voltage at the constriction.Comment: 7 pages, 2 figure

    An interactive web-based educational tool improves detection and delineation of Barrett’s esophagus related neoplasia

    Get PDF
    Background & Aims: Endoscopic detection of early Barrett’s esophagus-related neoplasia (BORN) is a challenge. We aimed to develop a web-based teaching tool for improving detection and delineation of BORN. Methods: We made high-definition digital videos during endoscopies of patients with BORN and non-dysplastic Barrett’s esophagus (NDBE). Three experts superimposed their delineations of BORN lesions on the videos using special tools. In phase 1, 68 general endoscopists from 4 countries assessed 4 batches of 20 videos. After each batch, mandatory feedback compared assessors interpretations with those from experts . These data informed selection of 25 videos for the phase 2 module, which was completed by 121 new assessors from 5 countries. A 5-video test batch was completed before and after scoring of the four 5-video training batches. Mandatory feedback was as in phase 1. Outcome measures were scores for detection, delineation, agreement delineation, and relative delineation of BORN. Results: A linear mixed-effect model showed significant sequential improvement for all 4 outcomes over successive training batches in both phases. In phase 2, median detection rates of BORN in the test batch increased by 30% (P [less than].001) after training. From baseline to the end of the study, there were relative increases in scores of 46% for detection, 129% for delineation, 105% for agreement delineation, and 106% for relative delineation (all P [less than].001). Scores improved independent of assessors’ country of origin or level of endoscopic experience

    Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn

    Get PDF
    The Cassini spacecraft collects high resolution images of the saturnian satellites and reveals the surface of these new worlds. The shape and rotation of the satellites can be determined from the Cassini Imaging Science Subsystem data, employing limb coordinates and stereogrammetric control points. This is the case for Epimetheus (Tiscareno et al. 2009) that opens elaboration of new rotational models (Tiscareno et al. 2009; Noyelles 2010; Robutel et al. 2011). Especially, Epimetheus is characterized by its horseshoe shape orbit and the presence of the swap is essential to introduce explicitly into rotational models. During its journey in the saturnian system, Cassini spacecraft accumulates the observational data of the other satellites and it will be possible to determine the rotational parameters of several of them. To prepare these future observations, we built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L_4 and L_5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital of Dione. The goal of this study is to understand how the departure from the Keplerian motion induced by the perturbations of the coorbital body, influences the rotation of these satellites. To this aim, we introduce explicitly the perturbation in the rotational equations by using the formalism developed by Erdi (1977) to represent the coorbital motions, and so we describe the rotational motion of the coorbitals, Janus and Epimetheus included, in compact form

    Continuous affect state annotation using a joystick-based user interface

    Get PDF
    Ongoing research at the DLR (German Aerospace Center) aims to employ affective computing techniques to ascertain the emotional states of users in motion simulators. In this work, a novel user feedback interface employing a joystick to acquire subjective evaluation of the affective experience is presented. This interface allows the subjects to continuously annotate their affect states, elicited in this scenario by watching video clips. Several physiological parameters (e.g. heart rate, electrodermal activity, respiration rate, etc.) were acquired during the viewing session. A statistical analysis is presented, which shows expected patterns in data that validate the design and methodology of the experiment and lay the groundwork for further experiments to be undertaken at the DLR
    corecore