77 research outputs found
Fabrication tolerant high-speed SiP ring modulators and optical add-drop multiplexers for WDM applications
Silicon ring resonator modulators (RRMs) have great potential to reduce footprint and power consumption and to increase modulation speeds in wavelength division multiplexed (WDM) transmitters. However, the optical properties of RRMs are highly sensitive to fabrication variations, which makes them challenging to design for volume production or a large number of WDM-channels. In this work, we present an RRM design that was specifically designed and experimentally validated to have reduced sensitivity to fabrication variations. This includes a sensitivity analysis of resist over- and under-exposure (±30 nm lateral dimension deviation) and of etch depth variability (±10 nm depth variation) within the coupling section. For our design, the deviation from the targeted coupling strength is improved twofold. The proposed devices are fabricated on SOI wafers using a standard CMOS-compatible process. We demonstrate RRMs with an extinction ratio above 5 dB, an OMA better that -7 dB (at 2 Vpp) and a 29 GHz electro-optical bandwidth, showing open eye diagrams at 32 Gb/s limited only by our measurement setup. The measured coupling coefficients are in good agreement with the simulated values. Furthermore, we applied the same design modifications to realize low-doped RRMs as well as ring based adddrop-multiplexers (OADMs). The agreement between the simulated and the measured coupling coefficients (that we identified as the main source of device performance variability) further confirms the effectiveness of our design modifications. These results suggest that the proposed design can be exploited to enable reliable fabrication of resonantbased devices on a large scale, especially in WDM systems
Power-efficient lumped-element meandered silicon Mach-Zehnder modulators
Driving electro-optic modulators in lumped-element (LE) configuration allows for small footprint, reduced power consumption, and improved high-speed performance. The main shortcoming of conventional rectilinear LE modulators are the required high drive-voltages, resulting from their shortened phase-shifters. To address this, we introduce a Mach-Zehnder modulator with meandered phase shifters (M-MZM), which can be driven in LE configuration, while keeping the optical phase shifter length in the same order as traveling-wave modulators (TW-MZMs). A design limitation that needs to be taken into account consists in the optical transit time of the device, that limits the overall electro-optic bandwidth. First, we review the overall power consumption improvement as well as the bandwidth enhancement in LE modulators compared to TW-MZMs, also taking the driver output impedance and parasitics from wire- or bump-bonds into account. Then, we report on the design, implementation, and experimental characterization of carrier-depletion based M-MZMs fabricated on silicon-on-insulator (SOI) wafers using standard CMOS-compatible processes. The fabricated M-MZMs, provided with low (W1), moderately (W2) and highly (W3) doped junctions, require 9.2 Vpp, 5.5 Vpp, and 3.7 Vpp for full extinction, with optical insertion losses of 5 dB, 6.3 dB and 9.1 dB. For all three M-MZMs, open eye diagrams are recorded at 25 Gb/s using a 50Ω driver and termination. For unterminated M-MZMs, higher data rates could be achieved, provided that a low output impedance driver be wire- or bump-bonded to the modulators. Finally, we compare the power consumption of the M-MZMs with TW-MZMs and show that the M-MZMs feature a 4X reduced power consumption at 25 Gb/s
Multicore fibers with 10 and 16 single-mode cores for the visible spectrum
We report multicore fibers (MCFs) with 10 and 16 linearly distributed cores with single-mode operation in the visible spectrum. The average propagation loss of the cores is 0.06 dB/m at λ = 445 nm and < 0.03 dB/m at wavelengths longer than 488 nm. The low inter-core crosstalk and nearly identical performance of the cores make these MCFs suitable for spatial division multiplexing in the visible spectrum. As a proof-of-concept application, one of the MCFs was coupled to an implantable neural probe to spatially address light-emitting gratings on the probe
Design of a high-speed germanium-tin absorption modulator at mid-infrared wavelengths
We propose a high-speed electro-absorption modulator based on a direct bandgap Ge0.875Sn0.125 alloy operating at mid-infrared wavelengths. Enhancement of the Franz-Keldysh-effect by confinement of the applied electric field to GeSn in a reverse-biased junction results in 3.2dB insertion losses, a 35GHz bandwidth and a 6dB extinction ratio for a 2Vpp drive signal
Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform
Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring
Microcantilever-integrated photonic circuits for broadband laser beam scanning
Laser beam scanning is central to many applications, including displays,
microscopy, three-dimensional mapping, and quantum information. Reducing the
scanners to microchip form factors has spurred the development of
very-large-scale photonic integrated circuits of optical phased arrays and
focal plane switched arrays. An outstanding challenge remains to simultaneously
achieve a compact footprint, broad wavelength operation, and low power
consumption. Here, we introduce a laser beam scanner that meets these
requirements. Using microcantilevers embedded with silicon nitride nanophotonic
circuitry, we demonstrate broadband, one- and two-dimensional steering of light
with wavelengths from 410 nm to 700 nm. The microcantilevers have ultracompact
~0.1 mm areas, consume ~31 to 46 mW of power, are simple to control, and
emit a single light beam. The microcantilevers are monolithically integrated in
an active photonic platform on 200-mm silicon wafers. The
microcantilever-integrated photonic circuits miniaturize and simplify light
projectors to enable versatile, power-efficient, and broadband laser scanner
microchips
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background:
Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods.
Methods:
We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories.
Findings:
From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger.
Interpretation:
Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
- …