53 research outputs found

    STUDIES ON GENE ACTION AND COMBINING ABILITY ANALYSIS IN BASMATI RICE

    Get PDF
    Thirty-six hybrids generated from crossing three lines with twelve testers were studied along with parents for combining ability and gene action in basmati rice. The general combining ability (GCA) and specifi c combining ability (SCA) were signifi cant for all the characters, indicating the importance of both additive and non-additive genetic components. But it is found that there was predominance of non-additive genetic components for expression of different traits in the present set of materials. Amongst the male parental lines, Taraori Basmati, Pusa 2503-693-1, Pusa 1235-95-73-1 and Pusa 2512-97-83-98-4 were best general combiners for grain yield along with other traits. The female cms line IR 68281A was best general combiner for grain yield along with other traits. The most promising specifi c combiners for grain yield and other traits were IR 68281A x UPRI 93-63-2, Pusa 3A x Taraori Basmati, Pusa 3A x UPR 2268-4-1, IR 58025A x Pusa 2511-97-107, IR 68281A x UPR 1840-31-1-1 and IR 58025A x RP 3135-17-12-88. Hence, the present study was carried out to obtain information on combining ability and gene action involved in expressing the different characters in basmati rice

    Development of Broad Spectrum and Durable Bacterial Blight Resistant Variety through Pyramiding of Four Resistance Genes in Rice

    Get PDF
    Not AvailableBacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae is a major biotic constraint on obtaining higher grain yields in rice. Marker-assisted backcross breeding (MABB) was performed by the pyramiding of Xa4, xa5, xa13 and Xa21 resistance genes in the popular variety, Ranidhan. A foreground selection in BC1F1, BC2F1, and BC3F1 progenies detected all the target genes in 12, 7 and 16 progenies by using the closely linked markers from a population size of 426, 410, and 530, respectively. The BB-positive progenies carrying the target genes with a maximal similarity to the recipient parent was backcrossed in each backcross generation. A total of 1784 BC3F2 seeds were obtained from the best BC3F1 progeny. The screening of the BC3F2 progenies for the four target genes resulted in eight plants carrying all the four target genes. A bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight disease. In addition, these pyramided lines were similar to Ranidhan in 16 morpho-quality traits, namely, plant height, filled grains/panicle, panicles/plant, grain length, grain breadth, grain weight, milling, head rice recovery, kernel length after cooking, water uptake, the volume expansion ratio, gel consistency,alkali-spreading value, and the amylose content.Not Availabl

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    2006. Studies on gene action and combining ability analysis in basmati rice

    No full text
    ABSTRACT Thirty-six hybrids generated from crossing three lines with twelve testers were studied along with parents for combining ability and gene action in basmati rice. The general combining ability (GCA) and specifi c combining ability (SCA) were signifi cant for all the characters, indicating the importance of both additive and non-additive genetic components. But it is found that there was predominance of non-additive genetic components for expression of different traits in the present set of materials. Amongst the male parental lines, Taraori Basmati, Pusa 2503-693-1, Pusa 1235-95-73-1 and Pusa 2512-97-83-98-4 were best general combiners for grain yield along with other traits. The female cms line IR 68281A was best general combiner for grain yield along with other traits. The most promising specifi c combiners for grain yield and other traits were IR 68281A x UPRI 93-63-2, Pusa 3A x Taraori Basmati, Pusa 3A x UPR 2268-4-1, IR 58025A x Pusa 2511-97-107, IR 68281A x UPR 1840-31-1-1 and IR 58025A x RP 3135-17-12-88. Hence, the present study was carried out to obtain information on combining ability and gene action involved in expressing the different characters in basmati rice

    Application of Statistical Tools for Data Analysis and Interpretation in Rice Plant Pathology

    No full text
    There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal component analysis, cluster analysis, factor analysis, pattern analysis, discriminant analysis, multivariate analysis of variance, correspondence analysis, canonical correlation analysis, redundancy analysis, genetic diversity analysis, and stability analysis, which involve in joint regression, additive main effects and multiplicative interactions, and genotype-by-environment interaction biplot analysis. The advanced statistical tools, such as non-parametric analysis of disease association, meta-analysis, Bayesian analysis, and decision theory, take an important place in analysis of disease dynamics. Disease forecasting methods by simulation models for plant diseases have a great potentiality in practical disease control strategies. Common mathematical tools such as monomolecular, exponential, logistic, Gompertz and linked differential equations take an important place in growth curve analysis of disease epidemics. The highly informative means of displaying a range of numerical data through construction of box and whisker plots has been suggested. The probable applications of recent advanced tools of linear and non-linear mixed models like the linear mixed model, generalized linear model, and generalized linear mixed models have been presented. The most recent technologies such as micro-array analysis, though cost effective, provide estimates of gene expressions for thousands of genes simultaneously and need attention by the molecular biologists. Some of these advanced tools can be well applied in different branches of rice research, including crop improvement, crop production, crop protection, social sciences as well as agricultural engineering. The rice research scientists should take advantage of these new opportunities adequately in adoption of the new highly potential advanced technologies while planning experimental designs, data collection, analysis and interpretation of their research data sets

    Not Available

    No full text
    Not AvailableDeeper rooting 1 (Dro1) and Deeper rooting 2 (Dro2) are the QTLs that contribute considerably to root growth angle assisting in deeper rooting of rice plant. In the present study, a set of 348 genotypes were shortlisted from rice germplasm based on root angle study. Screening results of the germplasm lines under drought stress identified 25 drought tolerant donor lines based on leaf rolling, leaf drying, spikelet fertility and single plant yield. A panel containing 101 genotypes was constituted based on screening results and genotyped using Dro1 and Dro2 markers. Structure software categorized the genotypes into four sub-populations with different fixation index values for root growth angle. The clustering analysis and principal coordinate analysis could differentiate the genotypes with or without deeper rooting trait. The dendrogram constructed based on the molecular screening for deep rooting QTLs showed clear distinction between the rainfed upland cultivars and irrigated genotypes. Eleven genotypes, namely Dular, Tepiboro, Surjamukhi, Bamawpyan, N22, Dinorado, Karni, Kusuma, Bowdel, Lalsankari and Laxmikajal, possessed both the QTLs, whereas 67 genotypes possessed only Dro1. The average angle of Dro positive genotypes ranged from 82.7º to 89.7º. These genotypes possessing the deeper rooting QTLs can be taken as donor lines to be used in marker-assisted breeding programs.Not Availabl

    Analysis of Homologous Regions of Small RNAs MIR397 and MIR408 Reveals the Conservation of Microsynteny among Rice Crop-Wild Relatives

    No full text
    MIRNAs are small non-coding RNAs that play important roles in a wide range of biological processes in plant growth and development. MIR397 (involved in drought, low temperature, and nitrogen and copper (Cu) starvation) and MIR408 (differentially expressed in response to environmental stresses such as copper, light, mechanical stress, dehydration, cold, reactive oxygen species, and drought) belong to conserved MIRNA families that either negatively or positively regulate their target genes. In the present study, we identified the homologs of MIR397 and MIR408 in Oryza sativa and its six wild progenitors, three non-Oryza species, and one dicot species. We analyzed the 100 kb segments harboring MIRNA homologs from 11 genomes to obtain a comprehensive view of their community evolution around these loci in the farthest (distant) relatives of rice. Our study showed that mature MIR397 and MIR408 were highly conserved among all Oryza species. Comparative genomics analyses also revealed that the microsynteny of the 100 kb region surrounding MIRNAs was only conserved in Oryza spp.; disrupted in Sorghum, maize, and wheat; and completely lost in Arabidopsis. There were deletions, rearrangements, and translocations within the 100 kb segments in Oryza spp., but the overall microsynteny of the region was maintained. The phylogenetic analyses of the precursor regions of all MIRNAs under study revealed a bimodal clade of common origin. This comparative analysis of miRNA involved in abiotic stress tolerance in plants provides a powerful tool for future Oryza research. Crop wild relatives (CWRs) offer multiple traits with potential to decrease the amount of yield loss owing to biotic and abiotic stresses. Using a comparative genomics approach, the exploration of CWRs as a source of tolerance to these stresses by understanding their evolution can be further used to leverage their yield potential

    Not Available

    No full text
    Not AvailableDrought during reproductive stage is among the main abiotic stresses responsible for drastic reduction of grain yield in rainfed rice. The genetic mechanism of reproductive stage drought tolerance is very complex. Many physiological and morphological traits are associated with this stress tolerance. Robust molecular markers are required for detection and incorporation of these correlated physiological traits into different superior genetic backgrounds. Identification of gene(s)/QTLs controlling reproductive stage drought tolerance and its deployment in rainfed rice improvement programs are very important. QTLs linked to physiological traits under reproductive stage drought tolerance were detected by using 190 F7 recombinant inbred lines (RIL) mapping population of CR 143–2-2 and Krishnahamsa. Wide variations were observed in the estimates of ten physiological traits studied under the drought stress. The RIL population was genotyped using the bulk- segregant analysis (BSA) approach. A total of 77 SSR polymorphic markers were obtained from the parental polymorphisms survey of 401 tested primers. QTL analysis using inclusive composite interval mapping detected a total of three QTLs for the physiological traits namely relative chlorophyll content (qRCC1.1), chlorophyll a (qCHLa1.1), and proline content (qPRO3.1) in the studied RIL population. The QTL, qPRO3.1 is found to be a novel one showing LOD value of 13.93 and phenotypic variance (PVE) of 78.19%. The QTL was located within the marker interval of RM22-RM517 on chromosome 3. Another novel QTL, qRCC1.1 was mapped on chromosome 1 at a distance of 142.8 cM and found to control relative chlorophyll content during terminal drought stress. A third novel QTL was detected in the population that controlled chlorophyll a content (qCHLa1.1) under the terminal stress period. The QTL was located on chromosome 1 at a distance of 81.8 cM and showed 64.5% phenotypic variation. The three novel QTLs, qRCC1.1, qCHLa1.1 and qPRO3.1 controlling relative chlorophyll content, chlorophyll a and proline content, respectively were identified in the mapping population derived from CR 143–2-2 and Krishnahamsa. These 3 QTLs will be useful for enhancement of terminal drought stress tolerance through marker-assisted breeding approach in rice.Not Availabl
    corecore