1,414 research outputs found

    Particle production at energies available at the CERN Large Hadron Collider within evolutionary model

    Get PDF
    The particle yields and particle number ratios in Pb+Pb collisions at the LHC energy sNN=2.76\sqrt{s_{NN}}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at the two different equations of state (EoS) for the quark-gluon matter and the two corresponding hadronization temperatures, T=165T=165 MeV and T=156T=156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle and number ratios. An important observation is that although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.Comment: 12 pages, 4 figure

    Description of bulk observables in Au+Au collisions at top RHIC energy in the integrated HydroKinetic Model

    Full text link
    The results on the main bulk observables obtained in the simulations within the integrated hydrokinetic model (iHKM) of Au+Au collisions at the RHIC energy sNN=200\sqrt{s_{NN}}=200 GeV are presented along with the corresponding experimental data from the STAR and the PHENIX collaborations. The simulations include all the stages of the collision process: formation of the initial state, its gradual thermalization and hydrodynamization, viscous relativistic hydro-evolution, system's hadronization and particlization, and, finally, an expansion of the interacting hadron-resonance gas. The model gives a satisfactory description of charged-particle multiplicities, particle number ratios, transverse momentum spectra for pions, kaons, protons and antiprotons, charged-particle v2v_2 coefficients, and femtoscopy radii at all collision centralities. It is demonstrated how one can estimate the times of the pion and kaon maximal emission from the femto-scales.Comment: 17 pages, 14 figure

    Description of bulk observables in Au+Au collisions at top RHIC energy in the integrated HydroKinetic Model

    Get PDF
    The results on the main bulk observables obtained in the simulations within the integrated hydrokinetic model (iHKM) of Au+Au collisions at the RHIC energy sNN=200\sqrt{s_{NN}}=200 GeV are presented along with the corresponding experimental data from the STAR and the PHENIX collaborations. The simulations include all the stages of the collision process: formation of the initial state, its gradual thermalization and hydrodynamization, viscous relativistic hydro-evolution, system's hadronization and particlization, and, finally, an expansion of the interacting hadron-resonance gas. The model gives a satisfactory description of charged-particle multiplicities, particle number ratios, transverse momentum spectra for pions, kaons, protons and antiprotons, charged-particle v2v_2 coefficients, and femtoscopy radii at all collision centralities. It is demonstrated how one can estimate the times of the pion and kaon maximal emission from the femto-scales.Comment: 17 pages, 14 figure

    Femtoscopy correlations of kaons in Pb+PbPb + Pb collisions at LHC within hydrokinetic model

    Full text link
    We provide, within the hydrokinetic model, a detailed investigation of kaon interferometry in Pb+PbPb+Pb collisions at LHC energy (sNN=2.76\sqrt{s_{NN}} = 2.76 TeV). Predictions are presented for 1D interferometry radii of KS0KS0K^0_SK^0_S and K±K±K^{\pm}K^{\pm} pairs as well as for 3D femtoscopy scales in out, side and long directions. The results are compared with existing pion interferometry radii. We also make predictions for full LHC energy.Comment: 12 pages, 6 figure

    Correlation femtoscopy of small systems

    Full text link
    The basic principles of the correlation femtoscopy, including its correspondence to the Hanbury Brown and Twiss intensity interferometry, are re-examined. The main subject of the paper is an analysis of the correlation femtoscopy when the source size is as small as the order of the uncertainty limit. It is about 1 fm for the current high energy experiments. Then the standard femtoscopy model of random sources is inapplicable. The uncertainty principle leads to the partial indistinguishability and coherence of closely located emitters that affect the observed femtoscopy scales. In thermal systems the role of corresponding coherent length is taken by the thermal de Broglie wavelength that also defines the size of a single emitter. The formalism of partially coherent phases in the amplitudes of closely located individual emitters is used for the quantitative analysis. The general approach is illustrated analytically for the case of the Gaussian approximation for emitting sources. A reduction of the interferometry radii and a suppression of the Bose-Einstein correlation functions for small sources due to the uncertainty principle are found. There is a positive correlation between the source size and the intercept of the correlation function. The peculiarities of the non-femtoscopic correlations caused by minijets and fluctuations of the initial states of the systems formed in pppp and e+ee^+e^- collisions are also analyzed. The factorization property for the contributions of femtoscopic and non-femtoscopic correlations into complete correlation function is observed in numerical calculations in a wide range of the model parameters.Comment: 34 pages, 5 figures. In the version 4 some stylistic improvements were made, some misprints were corrected. The results and conclusions are not change

    TOURISM IN THE PANDEMIC PERIOD: FEATURES AND DEVELOPMENT TRENDS

    Get PDF
    A pandemic with closure of borders, mandatory quarantine, and restrictions on transportation between countries has made significant adjustments in all areas of our life. The tourism industry is no exception. However, this does not mean that tourism, as a field of activity, has disappeared. The tourism industry lives and, unlike many others, develops: new trends appear that we could not even think of, creative approaches in the activity, interesting author's routes, which attract more and more tourists
    corecore