1,808 research outputs found

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    A Candidate Brightest Proto-Cluster Galaxy at z = 3.03

    Full text link
    We report the discovery of a very bright (m_R = 22.2) Lyman break galaxy at z = 3.03 that appears to be a massive system in a late stage of merging. Deep imaging reveals multiple peaks in the brightness profile with angular separations of ~0.''8 (~25 h^-1 kpc comoving). In addition, high signal-to-noise ratio rest-frame UV spectroscopy shows evidence for ~5 components based on stellar photospheric and ISM absorption lines with a velocity dispersion of sigma ~460 km s^-1 for the three strongest components. Both the dynamics and high luminosity, as well as our analysis of a LCDM numerical simulation, suggest a very massive system with halo mass M ~ 10^13 M_solar. The simulation finds that all halos at z = 3 of this mass contain sub-halos in agreement with the properties of these observed components and that such systems typically evolve into M ~ 10^14 M_solar halos in groups and clusters by z = 0. This discovery provides a rare opportunity to study the properties and individual components of z ~ 3 systems that are likely to be the progenitors to brightest cluster galaxies.Comment: 14 pages, 3 figures, submitted to ApJ Letter

    The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation

    Get PDF
    Motivated by the irregular and little-understood morphologies of z ~ 2 - 3 galaxies, we use non-parametric coefficents to quantify the morphologies of 216 galaxies which have been spectroscopically confirmed to lie at redshifts z = 1.8 - 3.4 in the GOODS-N field. Using measurements of ultraviolet (UV) and optical spectral lines, multi-band photometric data, and stellar population models we statistically assess possible correlations between galaxy morphology and physical observables such as stellar mass, star formation rate, and the strength of galaxy-scale outflows. We find evidence that dustier galaxies have more nebulous UV morphologies and that larger, more luminous galaxies may drive stronger outflows, but otherwise conclude that UV morphology is either statistically decoupled from the majority of physical observables or determined by too complex a combination of physical processes to provide characterizations with predictive power. Given the absence of strong correlations between UV morphology and physical parameters such as star formation rates, we are therefore unable to support the hypothesis that morphologically irregular galaxies predominantly represent major galaxy mergers. Comparing galaxy samples, we find that IR-selected BzK galaxies and radio-selected submillimeter galaxies (SMGs) have UV morphologies similar to the optically selected sample, while distant red galaxies (DRGs) are more nebulous.Comment: 26 pages. Accepted for publication in the ApJ. Version with full resolution figures is available at http://www.astro.caltech.edu/~drlaw/Papers/UVmorph.pd

    Spectroscopic Identification of a Proto-Cluster at z=2.300: Environmental Dependence of Galaxy Properties at High Redshift

    Full text link
    We have discovered a highly significant over-density of galaxies at z=2.300+/-0.015 in the course of a redshift survey designed to select star-forming galaxies in the redshift range z=2.3+/-0.4 in the field of the bright z=2.72 QSO HS1700+643. The structure has a redshift-space galaxy over-density of delta_g,z ~= 7 and an estimated matter over-density in real space of delta_m ~= 1.8, indicating that it will virialize by z~0 with a mass scale of ~= 1.4x10^15 M_sun, that of a rich galaxy cluster. Detailed modeling of the spectral energy distribution -- from the rest-far-UV to the rest-near-IR -- of the 72 spectroscopically confirmed galaxies in this field for which we have obtained K_s and Spitzer/IRAC photometry, allows for a first direct comparison of galaxy properties as a function of large-scale environment at high redshift. We find that galaxies in the proto-cluster environment have mean stellar masses and inferred ages that are ~2 times larger (at z=2.30) than identically UV-selected galaxies outside of the structure, and show that this is consistent with simple theoretical expectations for the acceleration of structure formation in a region that is over-dense on large scales by the observed amount. The proto-cluster environment contains a significant number of galaxies that already appear old, with large stellar masses (>10^11 M_sun), by z=2.3.Comment: 7 pages including 3 figures. Accepted for publication in ApJ. Typo correcte

    Integral Field Spectroscopy of High-Redshift Star Forming Galaxies with Laser Guided Adaptive Optics: Evidence for Dispersion-Dominated Kinematics

    Get PDF
    We present early results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 3 target galaxies Q1623-BX453, Q0449-BX93, and DSF2237a-C2 located at redshifts z = 2.1820, 2.0067, and 3.3172 respectively, each of which is well-resolved with a PSF measuring approximately 0.11 - 0.15 arcsec (~ 900 - 1200 pc at z ~ 2-3) after cosmetic smoothing. Neither galaxy at z ~ 2 exhibits substantial kinematic structure on scales >~ 30 km/s; both are instead consistent with largely dispersion-dominated velocity fields with sigma ~ 80 km/s along any given line of sight into the galaxy. In contrast, DSF2237a-C2 presents a well-resolved gradient in velocity over a distance of ~ 4 kpc with peak-to-peak amplitude of 140 km/s. It is unlikely that DSF2237a-C2 represents a dynamically cold rotating disk of ionized gas as the local velocity dispersion of the galaxy (sigma = 79 km/s) is comparable to the observed shear. Using extant multi-wavelength spectroscopy and photometry we relate these kinematic data to physical properties such as stellar mass, gas fraction, star formation rate, and outflow kinematics and consider the applicability of current galaxy formation models.[Abridged]Comment: 19 pages, 10 figures (5 color); accepted for publication in ApJ. Version with full-resolution figures is available at http://www.astro.caltech.edu/~drlaw/Papers/OSIRIS_data1.pd

    Flows and Decompositions of Games: Harmonic and Potential Games

    Get PDF
    In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to "nearby" games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games

    Evidence of Substructure in the Cluster of Galaxies A3558

    Get PDF
    We investigate the dynamical properties of the cluster of galaxies A3558 (Shapley 8). Studying a region of one square degree (∼\sim 3 Mpc2^2) centered on the cluster cD galaxy, we have obtained a statistically complete photometric catalog with positions and magnitudes of 1421 galaxies (down to a limiting magnitude of B∼21B \sim 21). This catalog has been matched to the recent velocity data obtained by Mazure et al. (1997) and from the literature, yielding a radial velocity catalog containing 322 galaxies. Our analysis shows that the position/velocity space distribution of galaxies shows significant substructure. A central bimodal core detected previously in preliminary studies is confirmed by using the Adaptive Kernel Technique and Wavelet Analysis. We show that this central bimodal subtructure is nevertheless composed of a projected feature, kinematically unrelated to the cluster, plus a group of galaxies probably in its initial merging phase into a relaxed core. The cD velocity offset with respect to the average cluster redshift, reported earlier by several authors, is completely eliminated as a result of our dynamical analysis. The untangling of the relaxed core component also allows a better, more reliable determination of the central velocity dispersion, which in turn eliminates the ``β\beta-problem'' for A3558. The cluster also shows a ``preferential'' distribution of subclumps coinciding with the direction of the major axis position angle of the cD galaxy and of the central X-ray emission ellipsoidal distribution, in agreement with an anisotropic merger scenario.Comment: 35 pages in latex, 17 figures in Postscript, accepted for publication in the Astrophysical Journa

    Interpreting high [O III]/H β ratios with maturing starbursts

    Get PDF
    Star-forming galaxies at high redshift show ubiquitously high-ionization parameters, as measured by the ratio of optical emission lines. We demonstrate that local (z < 0.2) sources selected as Lyman break analogues also manifest high line ratios with a typical [O III]/Hβ=3.36+0.14−0.04 – comparable to all but the highest ratios seen in star-forming galaxies at z ∼ 2–4. We argue that the stellar population synthesis code BPASS can explain the high-ionization parameters required through the ageing of rapidly formed star populations, without invoking any AGN contribution. Binary stellar evolution pathways prolong the age interval over which a starburst is likely to show elevated line ratios, relative to those predicted by single stellar evolution codes. As a result, model galaxies at near-solar metallicities and with ages of up to ∼100 Myr after a starburst typically have a line ratio [O III]/Hβ ∼ 3, consistent with those seen in Lyman break galaxies and local sources with similar star formation densities. This emphasises the importance of including binary evolution pathways when simulating the nebular line emission of young or bursty stellar populations

    Statistics of Stellar Populations of Star Clusters and Surrounding Fields in the Outer Disk of the Large Magellanic Cloud

    Get PDF
    A comparative analysis of Washington color-magnitude diagrams (CMDs) for 14 star clusters and respective surrounding fields in the Large Magellanic Cloud (LMC) outer disk is presented. Each CCD frame including field and respective cluster covers an area of 185 arcmin^2. The stellar population sampled is of intermediate age and metallicity. CMD radial analysis involving star count ratios, morphology and integrated light properties are carried out. Luminosity functions (LFs) are also presented. Two main results are: (i) Within the range 4<R(kpc)<8, the distance from the LMC center is well correlated with the average age in the sense that inner fields are younger and; (ii) Beyond approximately 8kpc the outer fields do not show evidence of a significant intermediate-age component in their stellar populations, as inferred from red giant clump star counts.Comment: 27 pages, 4 tables, 11 figures; accepted by the A
    • …
    corecore