We report the discovery of a very bright (m_R = 22.2) Lyman break galaxy at z
= 3.03 that appears to be a massive system in a late stage of merging. Deep
imaging reveals multiple peaks in the brightness profile with angular
separations of ~0.''8 (~25 h^-1 kpc comoving). In addition, high
signal-to-noise ratio rest-frame UV spectroscopy shows evidence for ~5
components based on stellar photospheric and ISM absorption lines with a
velocity dispersion of sigma ~460 km s^-1 for the three strongest components.
Both the dynamics and high luminosity, as well as our analysis of a LCDM
numerical simulation, suggest a very massive system with halo mass M ~ 10^13
M_solar. The simulation finds that all halos at z = 3 of this mass contain
sub-halos in agreement with the properties of these observed components and
that such systems typically evolve into M ~ 10^14 M_solar halos in groups and
clusters by z = 0. This discovery provides a rare opportunity to study the
properties and individual components of z ~ 3 systems that are likely to be the
progenitors to brightest cluster galaxies.Comment: 14 pages, 3 figures, submitted to ApJ Letter