4,773 research outputs found

    Photoassociation adiabatic passage of ultracold Rb atoms to form ultracold Rb_2 molecules

    Full text link
    We theoretically explore photoassociation by Adiabatic Passage of two colliding cold ^{85}Rb atoms in an atomic trap to form an ultracold Rb_2 molecule. We consider the incoherent thermal nature of the scattering process in a trap and show that coherent manipulations of the atomic ensemble, such as adiabatic passage, are feasible if performed within the coherence time window dictated by the temperature, which is relatively long for cold atoms. We show that a sequence of ~2*10^7 pulses of moderate intensities, each lasting ~750 ns, can photoassociate a large fraction of the atomic ensemble at temperature of 100 microkelvin and density of 10^{11} atoms/cm^3. Use of multiple pulse sequences makes it possible to populate the ground vibrational state. Employing spontaneous decay from a selected excited state, one can accumulate the molecules in a narrow distribution of vibrational states in the ground electronic potential. Alternatively, by removing the created molecules from the beam path between pulse sets, one can create a low-density ensemble of molecules in their ground ro-vibrational state.Comment: RevTex, 23 pages, 9 figure

    Piecewise adiabatic population transfer in a molecule via a wave packet

    Full text link
    We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses and represent a generalized adiabatic passage via a wave packet. We study piecewise Stimulated Raman Adiabatic Passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possibleComment: 4 pages, 5 figures. Submitted to Phys. Rev. Let

    Corner reflectors and Quantum-Non-Demolition Measurements in gravitational wave antennae

    Full text link
    We propose Fabry-Perot cavity with corner reflectors instead of spherical mirrors to reduce the contribution of thermoelastic noise in the coating which is relatively large for spherical mirrors and which prevents the sensitivity better than Standard Quantum Limit (SQL) from being achieved in laser gravitational wave antenna. We demonstrate that thermo-refractive noise in corner reflector (CR) is substantially smaller than SQL. We show that the distortion of main mode of cavity with CR caused by tilt and displacement of one reflector is smaller than for cavity with spherical mirrors. We also consider the distortion caused by small nonperpendicularity of corner facets and by optical inhomogeneity of fused silica which is proposed as a material for corner reflectors.Comment: 12 pages, LaTex, 7 figure

    Improved Draft Genome Sequence of \u3cem\u3eBacillus\u3c/em\u3e sp. Strain YF23, Which Has Plant Growth-Promoting Activity

    Get PDF
    We report here the improved draft genome sequence of Bacillus sp. strain YF23, a bacterium originally isolated from switchgrass (Panicum virgatum) plants and shown to exhibit plant growth-promoting activity. The genome comprised 5.82 Mbp, containing 5,933 genes, with 193 as RNA genes, and a GC content of 35.10%

    Differential compartmentalization of memory B cells versus plasma cells in salmonid fish

    Get PDF
    The disposition of teleost memory and plasma cells (PCs) has essentially been un-explored. As the organization of the teleost immune system differs significantly from that of mammals (i.e. no bone marrow or lymph nodes, hematopoietic anterior kidney), this disposition could be essential in understanding how comparable functions are achieved. To address this question, the primary and secondary antibody-secreting cell, B memory cell, and antibody responses to T-independent and T-dependent antigens were analyzed in trout. Although the TI and TD antibody responses did not differ substantively from one another, the secondary responses to both were significantly prolonged compared with the primary responses. Logarithmic increases in titer and affinity were achieved for both antigens during the primary, with only modest increases during the secondary response. Antibody-secreting cells, both PCs and plasmablasts, quantitatively paralleled antibody production, with antibody-secreting cells skewing to the hematopoietic anterior kidney for both antigens. However, the enhanced antigen-inducible response of immune fish (indicative of the memory pool) skewed to the peripheral blood and spleen. This pattern of memory versus PC disposition parallels that observed in mammals even though the organization of the respective immune systems differs considerably

    Electron Positron Capture Rates and the Steady State Equilibrium Condition for Electron-Positron Plasma with Nucleons

    Full text link
    The reaction rates of the beta processes for all particles at arbitrary degeneracy are derived, and an {\it analytic} steady state equilibrium condition μn=μp+2μe\mu_n=\mu_p+2\mu_e which results from the equality of electron and positron capture rates in the hot electron-positron plasma with nucleons is also found, if the matter is transparent to neutrinos. This simple analytic formula is valid only if electrons are nondegenerate or mildly degenerate, which is generally satisfied in the hot electron-positron plasma. Therefore, it can be used to efficiently determine the steady state of the hot matter with plenty of positrons. Based on this analytic condition, given the baryon number density and the temperature, if the nucleons are nondegenerate, only one algebraic equation for determining the electron fraction is obtained, which shows the great advantage of the analytic equilibrium condition.Comment: Accepted for publication in Phys. Rev.

    Selective Ablation of Cancer Cells with Low Intensity Pulsed Ultrasound

    Get PDF
    Ultrasound can be focused into deep tissues with millimeter precision to perform noninvasive ablative therapy for diseases such as cancer. In most cases, this ablation uses high intensity ultrasound to deposit nonselective thermal or mechanical energy at the ultrasound focus, damaging both healthy bystander tissue and cancer cells. Here, we describe an alternative low intensity (I_(SPTA) 20 ms causes selective disruption of a panel of breast, colon, and leukemia cancer cell models in suspension without significantly damaging healthy immune or red blood cells. Mechanistic experiments reveal that the formation of acoustic standing waves and the emergence of cell-seeded cavitation lead to cytoskeletal disruption, expression of apoptotic markers, and cell death. The inherent selectivity of this low intensity pulsed ultrasound approach offers a potentially safer and thus more broadly applicable alternative to nonselective high intensity ultrasound ablation
    corecore