60 research outputs found

    Religion and the Attentional Blink: Depth of Faith Predicts Depth of the Blink

    Get PDF
    Religion is commonly defined as a set of rules, developed as part of a culture. Here we provide evidence that practice in following these rules systematically changes the way people allocate their attention, as indicated by the attentional blink (AB), a deficit in reporting the second of two target stimuli presented in close succession in a rapid sequence of distracters. We provide evidence that Dutch Calvinists and Atheists, brought up in the same country and culture and controlled for race, intelligence, mood, personality traits, and age, differ with respect to the amount of resources invested into processing AB targets. Calvinists showed a larger AB than Atheists, which is consistent with the notion that people's attentional processing style reflects biases rewarded by their religious beliefs

    Alpha, Beta: The Rhythm of the Attentional Blink

    Get PDF
    Extant theories of the attentional blink propose that the most critical factor in determining second target accuracy is the time that elapses between the first and second targets. We report that this conclusion has overlooked an equally important determinant, namely, the frequency of the entraining stream in which these targets are embedded. Specifically, we show in two experiments that the signature of the attentional blink—second target accuracy that increases with intertarget lag—is significantly larger for entraining streams that are in the alpha-beta frequency range, relative to streams that are slower (theta) or faster (gamma). This finding ties the attentional blink critically, for the first time, to these two prominent oscillation frequencies that are known to be involved in the control of human attention and consciousness

    Functional imaging reveals working memory and attention interact to produce the attentional blink

    Get PDF
    Copyright @ 2012 Massachusetts Institute of Technology PressIf two centrally presented visual stimuli occur within approximately half a second of each other, the second target often fails to be reported correctly. This effect, called the attentional blink (AB; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18, 849-860, 1992], has been attributed to a resource "bottleneck," likely arising as a failure of attention during encoding into or retrieval from visual working memory (WM). Here we present participants with a hybrid WM-AB study while they undergo fMRI to provide insight into the neural underpinnings of this bottleneck. Consistent with a WM-based bottleneck account, fronto-parietal brain areas exhibited a WM load-dependent modulation of neural responses during the AB task. These results are consistent with the view that WM and attention share a capacity-limited resource and provide insight into the neural structures that underlie resource allocation in tasks requiring joint use of WM and attention.This research was supported by a project grant (071944) from the Wellcome Trust to Kimron Shapiro

    Altering stimulus timing via fast rhythmic sensory stimulation induces STDP-like recall performance in human episodic memory

    Get PDF
    Episodic memory provides humans with the ability to mentally travel back to the past,1 where experiences typically involve associations between multimodal information. Forming a memory of the association is thought to be dependent on modification of synaptic connectivity.2,3 Animal studies suggest that the strength of synaptic modification depends on spike timing between pre- and post-synaptic neurons on the order of tens of milliseconds, which is termed “spike-timing-dependent plasticity” (STDP).4 Evidence found in human in vitro studies suggests different temporal scales in long-term potentiation (LTP) and depression (LTD), compared with the critical time window of STDP in animals.5,6 In the healthy human brain, STDP-like effects have been shown in the motor cortex, visual perception, and face identity recognition.7,8,9,10,11,12,13 However, evidence in human episodic memory is lacking. We investigated this using rhythmic sensory stimulation to drive visual and auditory cortices at 37.5 Hz with four phase offsets. Visual relative to auditory cued recall accuracy was significantly enhanced in the 90° condition when the visual stimulus led at the shortest delay (6.67 ms). This pattern was reversed in the 270° condition when the auditory stimulus led at the shortest delay. Within cue modality, recall was enhanced when a stimulus of the corresponding modality led the shortest delay (6.67 ms) compared with the longest delay (20 ms). Our findings provide evidence for STDP in human episodic memory, which builds an important bridge from in vitro studies in animals to human memory behavior

    Theta phase synchronization is the glue that binds human associative memory

    Get PDF
    Episodic memories are information-rich, often multisensory events that rely on binding different elements [1]. The elements that will constitute a memory episode are processed in specialized but distinct brain modules. The binding of these elements is most likely mediated by fast-acting long-term potentiation (LTP), which relies on the precise timing of neural activity [2]. Theta oscillations in the hippocampus orchestrate such timing as demonstrated by animal studies in vitro [3, 4] and in vivo [5, 6], suggesting a causal role of theta activity for the formation of complex memory episodes, but direct evidence from humans is missing. Here, we show that human episodic memory formation depends on phase synchrony between different sensory cortices at the theta frequency. By modulating the luminance of visual stimuli and the amplitude of auditory stimuli, we directly manipulated the degree of phase synchrony between visual and auditory cortices. Memory for sound-movie associations was significantly better when the stimuli were presented in phase compared to out of phase. This effect was specific to theta (4 Hz) and did not occur in slower (1.7 Hz) or faster (10.5 Hz) frequencies. These findings provide the first direct evidence that episodic memory formation in humans relies on a theta-specific synchronization mechanism

    Interaction between theta phase and spike timing-dependent plasticity simulates theta-induced memory effects

    Get PDF
    Rodent studies suggest that spike timing relative to hippocampal theta activity determines whether potentiation or depression of synapses arise. Such changes also depend on spike timing between presynaptic and postsynaptic neurons, known as spike timing-dependent plasticity (STDP). STDP, together with theta phase-dependent learning, has inspired several computational models of learning and memory. However, evidence to elucidate how these mechanisms directly link to human episodic memory is lacking. In a computational model, we modulate long-term potentiation (LTP) and long-term depression (LTD) of STDP, by opposing phases of a simulated theta rhythm. We fit parameters to a hippocampal cell culture study in which LTP and LTD were observed to occur in opposing phases of a theta rhythm. Further, we modulated two inputs by cosine waves with 0° and asynchronous phase offsets and replicate key findings in human episodic memory. Learning advantage was found for the in-phase condition, compared with the out-of-phase conditions, and was specific to theta-modulated inputs. Importantly, simulations with and without each mechanism suggest that both STDP and theta phase-dependent plasticity are necessary to replicate the findings. Together, the results indicate a role for circuit-level mechanisms, which bridge the gap between slice preparation studies and human memory

    Electrophysiological measurement of the effect of inter-stimulus competition on early cortical stages of human vision

    Get PDF
    AbstractCompetition between inputs in early visual cortex has been established as a key determinant in perception through decades of animal single cell and human fMRI research. We developed a novel ERP paradigm allowing this competition to be studied in humans, affording an opportunity to gain further insight into how competition is reflected at the neural level. Checkerboard stimuli were presented to elicit C1 (indexing processing in V1), C2 (hypothesized to reflect V1 after extrastriate feedback), and P1 (extrastriate) components. Stimuli were presented in three randomized conditions: single stimulus, near proximity pairs and far proximity pairs. Importantly, near stimuli (0.16° visual angle apart) were positioned to compete in primary visual cortex, whereas far stimuli (2° apart) were positioned to compete in extrastriate visual areas.As predicted, the degree and spatial range of competition increased from the C1 component to the C2 and P1 components. Specifically, competitive interactions in C1 amplitude were modest and present only for near-proximity pairs, whereas substantial competition was present for the P1, even for far-proximity pairs. To our knowledge, this is the first study to measure how competition unfolds over time in human visual cortex. Importantly, this method provides an empirical means of measuring competitive interactions at specific stages of visual processing, rendering it possible to rigorously test predictions about the effects of competition on perception, attention, and working memory

    Single-trial phase entrainment of theta oscillations in sensory regions predicts human associative memory performance

    Get PDF
    Episodic memories are rich in sensory information and often contain integrated information from different sensory modalities. For instance, we can store memories of a recent concert with visual and auditory impressions being integrated in one episode. Theta oscillations have recently been implicated in playing a causal role synchronizing and effectively binding the different modalities together in memory. However, an open question is whether momentary fluctuations in theta synchronization predict the likelihood of associative memory formation for multisensory events. To address this question we entrained the visual and auditory cortex at theta frequency (4 Hz) and in a synchronous or asynchronous manner by modulating the luminance and volume of movies and sounds at 4 Hz, with a phase offset at 0° or 180°. EEG activity from human subjects (both sexes) was recorded while they memorized the association between a movie and a sound. Associative memory performance was significantly enhanced in the 0° compared with the 180° condition. Source-level analysis demonstrated that the physical stimuli effectively entrained their respective cortical areas with a corresponding phase offset. The findings suggested a successful replication of a previous study (Clouter et al., 2017). Importantly, the strength of entrainment during encoding correlated with the efficacy of associative memory such that small phase differences between visual and auditory cortex predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that theta oscillations serve a specific function in the episodic memory system: binding the contents of different modalities into coherent memory episodes

    Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions

    Get PDF
    Open Access funded by Wellcome Trust Under a Creative Commons license Acknowledgments This research was supported by the Wellcome Trust (grant number 077185/Z/05/Z) and the Welsh Assembly Government through the Wales Institute of Cognitive Neuroscience.Peer reviewedPublisher PD

    Isolating Action Prediction from Action Integration in the Perception of Social Interactions

    Get PDF
    Previous research suggests that predictive mechanisms are essential in perceiving social interactions. However, these studies did not isolate action prediction (a priori expectations about how partners in an interaction react to one another) from action integration (a posteriori processing of both partner’s actions). This study investigated action prediction during social interactions while controlling for integration confounds. Twenty participants viewed 3D animations depicting an action−reaction interaction between two actors. At the start of each action−reaction interaction, one actor performs a social action. Immediately after, instead of presenting the other actor’s reaction, a black screen covers the animation for a short time (occlusion duration) until a still frame depicting a precise moment of the reaction is shown (reaction frame). The moment shown in the reaction frame is either temporally aligned with the occlusion duration or deviates by 150 ms or 300 ms. Fifty percent of the action−reaction trials were semantically congruent, and the remaining were incongruent, e.g., one actor offers to shake hands, and the other reciprocally shakes their hand (congruent action−reaction) versus one actor offers to shake hands, and the other leans down (incongruent action−reaction). Participants made fast congruency judgments. We hypothesized that judging the congruency of action−reaction sequences is aided by temporal predictions. The findings supported this hypothesis; linear speed-accuracy scores showed that congruency judgments were facilitated by a temporally aligned occlusion duration, and reaction frames compared to 300 ms deviations, thus suggesting that observers internally simulate the temporal unfolding of an observed social interction. Furthermore, we explored the link between participants with higher autistic traits and their sensitivity to temporal deviations. Overall, the study offers new evidence of prediction mechanisms underpinning the perception of social interactions in isolation from action integration confounds
    corecore