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Abstract

Rodent studies suggest that spike timing relative to hippocampal theta activity determines whether potentia-
tion or depression of synapses arise. Such changes also depend on spike timing between presynaptic and
postsynaptic neurons, known as spike timing-dependent plasticity (STDP). STDP, together with theta phase-
dependent learning, has inspired several computational models of learning and memory. However, evidence to
elucidate how these mechanisms directly link to human episodic memory is lacking. In a computational
model, we modulate long-term potentiation (LTP) and long-term depression (LTD) of STDP, by opposing
phases of a simulated theta rhythm. We fit parameters to a hippocampal cell culture study in which LTP and
LTD were observed to occur in opposing phases of a theta rhythm. Further, we modulated two inputs by co-
sine waves with 0° and asynchronous phase offsets and replicate key findings in human episodic memory.
Learning advantage was found for the in-phase condition, compared with the out-of-phase conditions, and
was specific to theta-modulated inputs. Importantly, simulations with and without each mechanism suggest
that both STDP and theta phase-dependent plasticity are necessary to replicate the findings. Together, the re-
sults indicate a role for circuit-level mechanisms, which bridge the gap between slice preparation studies and
human memory.
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(s

Long-lasting changes in synaptic connectivity between neurons have been suggested to support learning
and memory processes at the cellular level in the brain. Direct evidence of how this cellular mechanism links
to human memory behavior is lacking. To investigate this, we constructed a computational model that im-
plements two synaptic plasticity mechanisms that are well established in rodent studies. One mechanism
suggests that strengthening or weakening in synaptic connectivity depends on the phase of ongoing theta
activity. The other mechanism suggests that synaptic modification depends on spike timing between two
neurons. Our model successfully reproduces results from rodent studies, as well as human episodic memo-
ry studies. These findings suggest a link between learning mechanisms at the cellular level and human asso-
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Introduction

Synaptic plasticity is considered to be the mechanism
underlying human memory, which depends on synchro-
nizing activity between neurons (Markram et al., 1997;
Hebb, 2002). Therefore, brain oscillations that synchron-
ize neuronal activity should be crucial for memory proc-
esses. Synchronized theta oscillatory activity (4-8 Hz), a
dominant rhythm in the hippocampus (Hip), is thought to
play a key role in synaptic modification (Buzsaki, 2002).
Rodent studies show that the timing of inputs relative to a
theta cycle are important to long-term potentiation (LTP)
and long-term depression (LTD) of hippocampal synap-
ses. In vitro, LTP can be induced by a brief burst of pulses
delivered at the CA1 theta peak, whereas LTD occurs if
the pulse is delivered at the theta trough (Huerta and
Lisman, 1995). Such theta-dependent synaptic plasticity
has also been observed in vivo in CA1 (Hdlscher et al.,
1997; Hyman et al., 2003) as well as in the dentate gyrus
(Pavlides et al., 1988).

Several neural models have been proposed to investi-
gate the role of hippocampal theta dynamics in learning
and memory (Hasselmo et al., 2002; Norman et al., 2006;
Ketz et al., 2013; Parish et al., 2018). One of these models
implements theta-phase reversal between monosynaptic
and trisynaptic pathways [i.e., from entorhinal cortex (EC)
to CA1 via Schaffer collaterals], with the aim of promoting
efficient learning by separating memory formation into
phases of encoding and retrieval (Hasselmo et al., 2002;
Ketz et al., 2013). The other two models purport to explore
the theoretical role that theta might play in network plas-
ticity and stability, by limiting the occurrence of LTP to a
phase of high inhibition and the occurrence of LTD to a
phase of low inhibition, allowing for an efficient encoding
of new associations and the protection of preexisting
memories from interference (Norman et al., 2006; Parish
et al., 2018). The present modeling work attempts to ex-
plain the relationship more fully between theta and synaptic
modification at the neuronal level, based on observations
of theta-dependent plasticity in hippocampal cells (Huerta
and Lisman, 1995).

Based on these findings, synchronizing inputs (i.e., ar-
riving at the same time in the hippocampus) to the LTP in-
ducing theta phase should lead to successful encoding of
the association between those inputs, compared with
when inputs are desynchronized (i.e., arrive at different
times in the hippocampus). Recently, this has been dem-
onstrated by human episodic memory studies (Clouter et
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al.,, 2017; Wang et al., 2018), in which the luminance of
videos and the amplitude of sounds were modulated at
4Hz to entrain visual and auditory cortical activity at
theta frequency. Memory for synchronously presented
stimuli was significantly better than for asynchronously
presented stimuli. Importantly, this memory advantage
was shown only for the theta-modulated stimuli, not for
the faster (alpha, 10.5Hz) or slower (delta, 1.7 Hz) fre-
quencies (Clouter et al., 2017).

Interestingly, human studies support the idea that more
effective memory formation depends on finely tuned tim-
ing between inputs. One such mechanism in synaptic
plasticity is spike timing-dependent plasticity (STDP).
This theoretical framework suggests that synaptic effi-
cacy decays exponentially as a function of the delay be-
tween spikes of presynaptic and postsynaptic neurons,
which leaves a very narrow time window (~25 ms) for ef-
ficient synaptic weight changes (Song et al., 2000). If the
postsynaptic neuron fires with a short delay after the fir-
ing of the presynaptic neuron, then the synaptic connec-
tion from the presynaptic neuron to the postsynaptic
neuron will be strengthened. LTD of the synapses will be
induced if the order of spikes is reversed. Empirical evi-
dence of STDP has been shown in several slice and cell
culture studies in rodent hippocampus (Bi and Poo, 2001)
as well as in human hippocampus (Silva et al., 2010).

To better understand the role of the two compo-
nents, theta phase-dependent plasticity and STDP, in
human episodic memory formation, we build on a pre-
vious model, the Sync/deSync model (Parish et al.,
2018), to create a new version. Significantly, we sepa-
rate LTP and LTD processes, which are now modu-
lated by opposing theta phases in the hippocampus,
where previously plasticity was more generally modu-
lated by theta phase (i.e., both LTP and LTD). To find
the optimal set of parameters, we first aimed to repro-
duce findings from Huerta and Lisman (1995) showing
that LTP and LTD occur in opposing theta phases, then
used these parameters to reproduce findings from the
human episodic memory studies (Clouter et al., 2017;
Wang et al., 2018). Our findings provide a computational
framework to link human behavior to hippocampal func-
tion at the circuitry or even cellular level.

Materials and Methods

Modeling principles and experimental paradigm

Inspired by models implementing reversals of theta phase
across hippocampal subfields (Hasselmo, 2005; Ketz et al.,
2013), we build on a previous model, the Sync/deSync
model (Parish et al., 2018). This previous model focuses on
the key function of CA1, where theta rhythm establishes an
inhibitory phase (i.e., suppressed neural firing in CA1), during
which time synapses undergo LTP, and a facilitatory phase
(i.e., enhanced neural firing in CA1), when LTD occurs.

The model parameters were fit in relation to a hippo-
campal cell culture study (Huerta and Lisman, 1995)
showing that stimulation at opposing theta phases
induces LTP and LTD, respectively. Further, we simu-
lated human episodic memory experiments involving a
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multisensory entrainment paradigm (Clouter et al., 2017;
Wang et al., 2018) and showed that human episodic mem-
ory formation depends on stimulus input timing relative to
theta oscillations. In these studies, the luminance of videos
and the amplitude of sounds were modulated by 4 Hz co-
sine waves. The phase offsets of modulated sounds were
either in phase (0°) or out of phase (90°, 180°, and 270°)
from modulated videos (Fig. 1B). Each pair of sounds and
videos was presented for 3 s while participants were asked
to form associations between them. To test participants’
memory on the associations between the videos and sounds,
each sound was presented again during recall and partici-
pants were asked to select the video that was paired with the
sound earlier in the study phase. To simulate this paradigm,
we fed two 4 Hz cosine waves as visual and auditory stimulus
inputs into two independent neural populations. The phase
offsets of the auditory stimulus are either in phase (0°) or out
of phase (90°, 180°, and 270°) from the visual stimulus input.

Neuron physiology

The model architecture is carried forward from that of
the Sync/deSync model (Parish et al., 2018), which con-
sists of two groups of neurons that represent the neocortex
(NC) and hippocampus. Where previously these groups
were themselves split into subgroups to denote different
image-based stimuli (Parish et al., 2018), here two sub-
groups of neurons are created to represent the visual and
auditory stimulus, respectively, in both the NC and the hip-
pocampus (Fig. 1A). The total number of neurons in NC
was 20, and the number of neurons in the hippocampus
was 10.

Neuron membrane potential changes are modeled by an
integrate-and-fire equation (Eq. 1), where the membrane
potential decays over time to a resting potential (E, = -70
mV) at a rate dictated by the membrane conductance (g =
0.03). Here, a spike event is generated if the voltage ex-
ceeds a threshold (Vth = -55mV), at which time the voltage
is clamped to the resting potential for an absolute length of
time to approximate a refractory period (2 ms). As well as
the leak current, the input current for model neurons con-
tains the sum of all spike events occurring at presynaptic
neurons (/syn), alternating current (AC) that represents NC
alpha and hippocampal theta oscillations (/ac), any existing
direct current (Ipc) and an afterdepolarization (ADP) func-
tion (/app), described later:

av,

Co gt

= Gm(EL — Vin) + lsyn + Iac + Ioc + Iaop. (1)

Equation 2 explains the process by which neurons
communicate through spike events, whereby the sum of
all spike events over time makes up the /gy, current. Here,
an alpha function is used to model the EPSP, which pro-
vides an additive exponential function that diminishes fur-
ther the current time point (f) is from the initiating spike
event (ti.). The amplitude of the function is dictated by
the current synaptic weight of the postsynaptic synapse
(0 < p < 1) multiplied by its maximal weight (Wnax). All
spike events had a delay of 2 ms before they reached /, as
follows in Equation 2 (generation of an EPSP through time
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using an alpha function, here termed an EPSP function so
as not to confuse with the latter modeling of alpha
oscillations):

EPSP(t) = Whnax - P(t) ’ <e : g) : 37%, At =t — e

@

Hippocampal neurons received additional input from an
ADP function, as in previous models (Jensen et al., 1996;
Parish et al., 2018); Eq. 3; Aapp = 0.2nA, Tapp = 250 ms).
This provided exponentially ramping input, which was
reset after each spike event (t;.). The ADP function be-
stowed on model hippocampal neurons an inherent pref-
erence for spiking at a theta frequency, as well as slowing
down their overall firing rate as a source of effective inhibi-
tion. It was this latter function that played a central role in
the previous iteration of the Sync/deSync model (Parish
et al., 2018), where the desynchronization of an oscillating
cell assembly required more input for slower spiking neu-
rons in Equation 3 (ADP function), as follows:

Iaop(t) = M : 917"“%, At =t — tie. )
TADP

The learning rule was implemented via an adapted
STDP mechanism, inspired by other models (Song et al.,
2000; Graupner and Brunel, 2012). We first consider two
bidirectionally connected neurons in a traditional STDP
framework. Upon the occurrence of a spike event in a
model neuron, postsynaptic weights are strengthened for
any given presynaptic neuron that spiked beforehand or
weakened in the vice versa condition, the assumption
being that the spike arriving at the postsynaptic connec-
tion must have either contributed to or competed with the
spike event in question, depending on the directionality of
the connection, leading to a reward or punishment of the
synapse, respectively. To implement this, we here calcu-
late potential synaptic plasticity via functions for LTP (F_tp)
and LTD (F.p) at the time of an eliciting spike (t) in
Equations 4.1 and 4.2. Parameters were fitted to model the
replication of data obtained from a hippocampal cell cul-
ture study (Huerta and Lisman, 1995) as shown in Figure 2,
which also acts as a visual guide to the description of the
set of Equations 4 and 5. Note that the measurement of
global theta phase is dependent on the site of the observa-
tion, where it might be phase reversed if measuring at the
hippocampal fissure or at the cell body of CA3 (Hasselmo,
2005). As in prior models (Parish et al., 2018), we reverse
theta phase from that of anatomic observations (Huerta
and Lisman, 1995). This enables the functional selectivity
and preferential binding of neurons that fire together out of
phase, at a time when most cells are inhibited and there-
fore inactive.

In the case of potentiation (Eqg. 4.1), potential LTP at the
post-synaptic connection (j) is calculated as the summa-
tion of historic presynaptic spikes (npre) that occurred
before the spike event in question (where t; < f), weighted
by an absolute value (A, = 0.65). Contributions of presyn-
aptic spikes were proportional to an exponential decay,
thus favoring spikes that occurred close together in time
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A Adapted STDP learning rule
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Figure 1. Model architecture and experimental paradigm. A, Two subgroups of neurons are created to represent the visual and au-
ditory stimuli, respectively, in both NC and the hippocampus. STDP is enabled and modulated by ongoing theta oscillations, which
modulates LTP (green) and LTD (purple) at opposing phases. B, To simulate the human episodic memory experiments using a multi-
sensory entrainment paradigm (Clouter et al., 2017; Wang et al., 2018), two 4 Hz cosine waves as visual (blue) and auditory (orange)
stimulus inputs were fed into two independent neural populations. The phase offsets of the auditory stimulus are either in phase (0°)
or out of phase (90°, 180°, and 270°) from the visual stimulus input. Hippocampal theta phase was reset with a 180° offset from
modulated visual stimulus after stimulus onset.

(rs = 20ms). Potential potentiation of the synapse in re-  historic postsynaptic spikes (np0st) that occurred before the
sponse to eliciting spike events is shown in Figure 2Aii  spike event in question (where t; < f), weighted by an abso-
(right-hand axis, blue-shaded region). In the case of de- lute value (A_ = 0.65). Similarly, potential depression of the
pression (Eqg. 4.2), potential LTD at the presynaptic con-  synapse in response to eliciting spike events is shown in
nection () was similarly calculated as the summation of  Figure 2Bii (right-hand axis, red-shaded region), as follows:
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Figure 2. Evaluation of theta-modulated STDP. Ai, Bi, Independent simulations depicting synaptic plasticity after a single burst of 4
spikes at 100 Hz (amplitude =3 pA), both in the trough (Ai) or the peak (Bi) of ongoing theta oscillations. Aii, Bii, Potential plasticity
induced by spike pairings is calculated via functions (shaded regions; Egs. 4.1, 4.2) for LTP (blue) and LTD (red). At the time of the
spike event, synapses undergo potentiation or depression (black lines; Egs. 5.1, 5.2) if potential plasticity is above or below a poten-
tiation or depression threshold (blue and red dotted lines, respectively). Aiii, Biii, Overall synaptic change is calculated as a percent-
age of a baseline period through time. C, Dependence on bursting for inducing plasticity, where the number of spikes in a burst was
increased from 1 to 4 either in the peak or trough of ongoing theta (simulating 25 trials/condition). Overall synaptic change was cal-
culated as the percentage difference to a baseline period, taking an average across all involved synapses. D, Earlier experimental
observations that indicated the importance of bursting for inducing plasticity (Huerta and Lisman, 1995). The notation of “trough”
and “peak” is dependent on the location of the recording site that describes theta phase. We prefer to flip this notation in relation to
prior studies, to make clear the functional role theta might play in neuronal selectivity. See also Extended Data Figure 2-1 for a more
in-depth replication of the observations from the study by Huerta and Lisman (1995), in which an additional rule is implemented to
model the occurrence of observed heterosynaptic plasticity on nonstimulated pathways (Extended Data Egs. 5-1, 5-2).

) Dpre 4ot # < 1), as in previous models (Hasselmo, 2005; Norman
Fue(t,i) =Y A -[1-0(t)]-e=, (4.1) et al,, 2006; Ketz et al., 2013; Parish et al., 2018) and as
<t suggested by empirical evidence (Pavlides et al., 1988;
Huerta and Lisman, 1995). As a continuation of previous
L e bt modeling work (Parish et al., 2018), where both LTP and
Fuo(t.)) = ;A* 0(G) e, (42)  LTD were multiplied by the phase of theta, we then pro-

<

vided preferential phases of general plasticity to active
neurons. Here, we develop the learning rule by splitting
LTP and LTD into opposing phases of theta (as exempli-

Nere) OF historic spike events (t; and t) arriving at a postsy- fied in Eqs_. 4.1 and 4:2, where hlstorlc_splke events were
naptic () or presynaptic (j) synapse relative to a given further weighted by either theta or the inverse of theta for
spike event (#), where an absolute value (A,/A_) is modu-  FLte @and Firp, respectively, as indicated in Fig. 2A,B by
lated by the difference in spike times and theta phase. the relationship of potential potentiation and depression
Plasticity functions are separated for both LTP and LTD, to the phase at which spike events occur relative to an on-
which are in turn modulated by opposing phases of a  going theta cycle). The current model replaces the expo-
theta oscillation (0 < 6 < 1). nential passive decay with the active theta phase-specific

Further adding to this classical STDP framework, we  LTD, which was crucial for the model to replicate further
here modulate learning by ongoing theta oscillations (0 <  experimental work (Clouter et al., 2017; Wang et al.,

where synaptic plasticity functions (F) calculate potential
plasticity as the summation of the total number (N0t and
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2018). Nuanced offsets in the phase of active stimuli were
preferentially rewarded or punished because of this seg-
regation of continuous time into phases of potentiation
and depression. In this way, stimuli that synchronized in
phase were rewarded and bound together, while those
that dropped out of phase with one another were actively
punished.

For each spike event, Equations 5.1 and 5.2 were applied
to all i and j to the spiking neuron in a single-use fashion
[i.e., at the millisecond of spike occurrence (f) and not over a
sustained period]. The terms and parameters of Equations
5.1 and 5.2 were fit to model experimental observations of
hippocampal cell cultures (Huerta and Lisman, 1995) and
are visualized in the left-hand axis of Figure 2, A and B
(black lines). Synapses changed in proportion to their prior
value (or the inverse), such that 0 < p < 1. Synaptic change
occurred at a constant rate for potentiation (y, = 1.5) and
depression (yq = 0.75), where potentiation occurred at
twice the rate of depression to more closely resemble theta-
modulated plasticity observed anatomically (Huerta and
Lisman, 1995), as shown in Figure 2D. In these observa-
tions, the bursting of single cells was just as important in
acting as a gateway to plasticity. This is captured in the
usage of a Heaviside function (H[]), which provides either a
1 or a 0 dependent if potential plasticity (F tp or F 1p) was
above a plasticity threshold (e tp = 1 for potentiation; e .1p =
1 for depression), thus nullifying singlet or doublet spike
pairings from triggering plasticity at the synapse. These
thresholds are indicated by the dotted lines in Figure 2, Aii
and Bii (right-hand axis; blue, & 1p; red, £, 1p). The amount
of plasticity at the synapse was also moderated by the
amount by which potential plasticity was above the plastic-
ity threshold, causing a graded plasticity effect that expo-
nentially increases the more spike pairings are contained
within a burst (Fig. 2D, experimental observations). These
alterations to the more traditional STDP rules that informed
our model (Song et al., 2000; Graupner and Brunel, 2012)
allowed us to closely replicate anatomic observations that
synaptic plasticity is dependent on theta phase (Fig. 2A,B)
and bursting (Fig. 2C) in hippocampal cell cultures (Huerta
and Lisman, 1995). This in turn has allowed us to replicate
more nuanced memory effects (Clouter et al., 2017; Wang
et al., 2018) than the previous instantiation of the Sync/
deSync model (Parish et al., 2018), as follows:

dp; . .
dpt = ‘)’p(1 - pi) -H[Fyre(t,i) — eite) - [Fure(t, i) — eLtel,
(5.1
dp; B HIE , £ .
gt —Ya P} [Furo(t,)) — evm] - [Fuo(t,)) — eurol.

(5.2)

Equations 5.1 and 5.2 show actual plasticity acting on a
synapse (0 < p < 1) at the occurrence of a spike event ().
For any given spiking neuron, postsynaptic (/) and presyn-
aptic () efficacy changes are induced by potential plastic-
ity functions (F_.tp and F1p, respectively) being above a
threshold (e p and & 1p, respectively).

See also Extended Data Figure 2-1 for a more in-depth
replication of the aforementioned anatomic observations
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(Huerta and Lisman, 1995). There we implement an addi-
tional rule to model the occurrence of observed heterosy-
naptic plasticity on nonstimulated pathways (Extended
Data Egs. 5-1, 5-2). With respect to the Occam’s razor
principle, this was eventually excluded from the overall
functionality of our model, as it did not directly influence
results from our simulated paradigm and was also not
central to the original anatomic observations. However,
the additional rule might be useful to regulate network sta-
bility in the application of our theta-phase learning rule to
large networks (Volgushev et al., 2016).

NC system

Neurons within each subgroup (i.e., auditory or visual)
of the NC had a 25% chance of being connected (W ax =
0.3). Connections of neurons between subgroups were not
implemented in NC as it was assumed visual and auditory
stimuli had not been previously associated. Synaptic plas-
ticity (as described in Egs. 4, 5) was also not operating on
cortical synapses as in the complimentary systems frame-
work (O’Reilly et al., 2014) it is assumed that cortical plas-
ticity occurs on a much slower timescale. Background
noise that each NC neuron is receiving was estimated by
Poisson distributed spike trains (4000 spikes/s; Wpmax =
0.023). A cosine wave of 10 Hz (amplitude = 0.1 pA) was fed
into NC neurons via Iac. Two constant inputs were fed into
each NC subgroup to simulate the presentation of visual
and auditory stimuli via Ipc (@amplitude =1.75 pA). These in-
puts were either modulated by a cosine wave at different
frequencies and phase offsets or not modulated depending
on the simulation purpose, which will be provided below.

Hippocampal system

The two subgroups of hippocampal neurons that repre-
sented visual and auditory stimuli were fully connected to
their NC counterparts (Fig. 1A; Wax = 0.35 for NC — Hip
synapses; Wmax = 0.08 for Hip — NC synapses), as it was
assumed both stimuli were previously known. Background
noise that each hippocampal neuron is receiving was esti-
mated by Poisson distributed spike trains (1500 spikes/s;
Wmax = 0.015). A cosine wave of 4 Hz (amplitude = 0.25 pA)
was fed into each hippocampal neuron to model ongoing
theta activity. Synapses within the entire hippocampus had
a probability of 50% of forming a connection (Wp,ax = 0.65),
such that weights for intrasubgroup synapses were set
to maximum and those for intersubgroup synapses were
initially set to 0. Synaptic plasticity was in effect on all hip-
pocampal synapses, as described in Equations 4 and 5, al-
lowing for the association of visual and auditory stimuli to
take place within the hippocampus.

Critical to the model was the assumption of an interme-
diary relay node between NC and hippocampal sub-
groups, assumed to be located somewhere in the EC. We
implemented a filter function to simplify the relay node as
a filtered input, where the amplitude of the EPSP function
(Eqg. 2) that was applied to spikes originating in the NC
and arriving at hippocampal synapses was modulated via
the pathway between EC and the hippocampus (Eq. 6;
Wec = 0.3). This pathway is known to have a reversal
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phase relationship with hippocampal theta (Hasselmo,
2005), resulting in a stronger input at the hippocampal
theta trough and a weaker input at the hippocampal theta
peak. This intermediary filter allowed for model NC neu-
rons that are entrained at a theta frequency to be active at
and thus maximally induce plasticity in the appropriate
hippocampal theta phase, as follows:

(1= Onip) + (1 — Wee)

T+ (1= Wg) ©

Oec =

where theta in the EC existed as the phase reversal of
hippocampal theta (0 < 6, < 1), such that EC intermedi-
ary modulation of the EPSP function between NC and hip-
pocampus neurons existed within the range 0 — 0.5 <
Oec < 1, dependent on Wec.

Simulation procedure and model evaluation

The human episodic memory paradigm we chose to
simulate is a multisensory associative memory paradigm
from the study by Clouter et al. (2017). The amplitude of
neutral sound clips (3 s) and the luminance of neutral
movie clips (3 s) were modulated with a 4 Hz sine wave.
The phase offsets between the modulation of movies and
sounds were 0° (in-phase) or 90°, 180°, and 270° (out of
phase). Participants were asked to remember the associ-
ation between a sound and a movie. After a distractor
task, they were presented with one of the sounds and
asked to choose, from four still images, which image was
from the movie they had seen earlier paired with the
sound. To compare our model with this episodic memory
paradigm, we simultaneously fed two cosine waves (0 <
amplitude < 1 pA) into the visual and auditory NC sub-
groups (Fig. 1B). A 2 s interstimulus interval was used be-
fore visual-auditory stimulus presentation. The two cosine
waves were modulated at 4 Hz (theta), 1.652 Hz (delta), and
10.472Hz (alpha) with auditory stimulus phase offsets of
0°, 90°, 180°, and 270° from the visual stimulus. The faster
and slower frequencies were chosen to assess frequency
specificity of the learning effect, as shown in the study by
Clouter et al. (2017). A baseline condition was also con-
ducted by comparing learning in the theta 0° and 180°
phase offset conditions with a nonoscillatory, constant
input (the “no-flicker” condition in Clouter et al., 2017). To
account for the difference in the amount of information be-
tween oscillatory and nonoscillatory conditions, the stimu-
lus length in the no-flicker condition was half of the length
in the theta conditions (1.5 s). To explore the model behav-
ior beyond our empirical data, stimulus inputs were modu-
lated at three additional frequencies, 18.335Hz (beta),
41.236 Hz (low gamma), and 71.771 Hz (high gamma) with
four more phase offset conditions, 45°, 135°, 225°, and
315°. To allow learning in stimulus inputs modulated
by higher frequencies, stimulus input strength was in-
creased by using an exponential function of stimulus
modulation frequency [1.75 - exp((frequency/20)°); delta
stimulus strength =1.75; theta stimulus strength = 1.76;
alpha stimulus strength = 2.02] and as a logarithmic function
of stimulus modulation frequency [2.2 - log10(frequency);
beta = 2.78; low gamma = 3.55; high gamma = 4.08].
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To model the variability of brain activity entrained by an
external rhythmic stimulus, we introduced noise that was
formed by a normal distribution centered at each stimulus
input frequency (i.e., 4, 1.652, and 10.472 Hz) and with an
Standard Deviation (SD) of 0.015 multiplied by each input
frequency, respectively, for additional independent simu-
lations. Similarly, in another set of independent simula-
tions (theta, delta, alpha, and no-flicker conditions), we
introduced noise to hippocampal dynamics by randomiz-
ing the hippocampal theta frequencies over a normal dis-
tribution centered at 4 Hz and with an SD of 0.02, as well
as randomizing the EC phase offsets relative to ongoing
theta with a normal distribution centered at 180° and with
an SD of 0.167. To model the trial-by-trial variability of
phase offsets between inputs, noise was introduced to
phases of two input stimuli by randomizing the phases
over normal distributions centered at the corresponding
phases (i.e., 0°, 90°, 180°, and 270°) with an SD of 5. So
far, for all simulations, ongoing alpha and theta cosine
waves (i.e., Iac in Eq. 1) had a random phase at the begin-
ning of each simulation. During learning, hippocampal
theta phase was reset with a 180° offset from modulated
visual stimulus input after stimulus onset (Fig. 1B).
Importantly, this enabled the fluctuation of theta-modu-
lated plasticity to be fully synchronized with stimulus in-
puts, thus maximizing the learning potential of the model.
Evidence for such a theta reset exists in several empirical
studies (Rizzuto et al., 2003; ter Wal et al., 2021).

Model evaluation was performed by comparing the full
model with two compact versions of the model. In the
theta-phase learning-only version, the STDP component
was eliminated, and selected synapses were strengthened or
weakened depending on hippocampal theta phase (i.e., re-
moving the exponential components and redefining —1 <
0 <1inEgs. 4.1 and 4.2, as well as forcing the constants yp
and —vyd in Equations 5.1 and 5.2 to both be positive).
This forced synapses to be bidirectionally and nonspe-
cifically weakened or strengthened at the inhibitory or
excitatory phases of theta, respectively. In the STDP-
only version, we removed hippocampal theta activity,
such that hippocampal theta phase did not reset with
stimulus onset and both STDP weight changes and
EPSP at synapses of input to the hippocampus were in-
dependent of ongoing theta phase; that is, 6(f) was set to
1 in Equations 4.1 and 4.2 and #gc was set to 1 in Equation
6. This resulted in a lack of punishment for weak weight
changes between groups with slightly overlapping time win-
dows, a function previously performed by theta-specific
LTD. This caused sufficient learning in every phase offset
condition to such an extent that they did not differ from each
other (Extended Data Fig. 7-1). To resolve this, we adjusted
the range of input strength from between 0 and 1 to be-
tween —1 and 1 (@amplitude = 1.75 pA), thus more precisely
defining the time windows for overlapping firing between
the two groups of neurons and punishing the weak weight
changes between slightly overlapping groups, allowing us
to evaluate the impact of STDP learning on the theta-modu-
lated inputs with different phase offsets. All simulations
were run for 384 trials for each condition, except the simula-
tions for three additional input frequencies and phase offset
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conditions (48 trials for each condition), which were then
averaged across trials for each condition. For each simula-
tion, we randomized a new set of initial synaptic connec-
tions as well as new Poisson distributed spike trains for all
conditions. We also initialized a new randomized frequency
or EC phase offset for the simulations with noise.

Model comparison statistics

The fitting of the full model was statistically compared
with the fitting of the theta phase-only and the STDP-only
models, respectively, using F tests. To directly compare
the simulated memory performance with the empirical
findings, after learning, hippocampal weights were aver-
aged between 2.75 and 3 s (Fig. 3Ai) for each trial in the
theta, delta, alpha, and no-flicker conditions. A memory
decision index was computed by comparing the mean
hippocampal weight value with a threshold (Extended
Data Fig. 3-1). The threshold was set to the 10th percen-
tile of the values in each trial across the above-mentioned
conditions. The memory performance of a trial (recalled
successfully or not) was determined by whether the value
was above the threshold. The threshold was also applied
to other simulations when noise was introduced to the
input frequency or hippocampal theta frequency, as well as
the theta phase-only and STDP-only models. The model
comparisons were statistically tested by the Bayesian in-
formation criterion (BIC).

Data availability

All human data and the MATLAB code of the model to
run the simulations can be downloaded at: https://github.
com/GP2789/Sync-deSync-model-TIME. The code is avail-
able as Extended Data 1. The results of the simulations
were obtained by running the code using a PC with a
2.8 GHz processor and 32 GB of RAM, a 64 bit version of
the Microsoft Windows 10 operating system, and 64 bit
MATLAB version R2020a.

Results

Simulated hippocampal weight change reproduces
theta-phase synchrony-induced memory
enhancement

We compared memory performance between the results
of our model and those from human episodic memory stud-
ies that establish modulation of theta-phase synchrony.
Specifically, Clouter et al. (2017) and Wang et al. (2018)
used a multisensory theta entrainment paradigm to exter-
nally manipulate the precise timing of visual and auditory in-
puts. As depicted in Figure 1B, luminance and amplitude of
visual and auditory stimuli were modulated at 4 Hz with dif-
ferent phase offsets between the two stimuli [0° (in-phase),
and 90°, 180°, and 270° (out-of-phase)]. Human partici-
pants’ recall accuracy was evaluated by presenting the
auditory stimulus and requesting participants to select
the associated visual stimulus with which it was previ-
ously paired during the encoding phase. The encoding
phase was simulated by feeding two 4 Hz cosine waves
that had phase offsets at either in-phase (0°) or out-of-
phase (90°, 180°, and 270°) for 3 s into two subgroups
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of NC neurons that represented visual and auditory cortical
neurons. The hippocampal theta phase was reset to be
180° offset from the visual stimulus by stimulus onset dur-
ing encoding so that the LTP phase was aligned with the
visual stimulus input. The entire procedure was simulated
384 times for each phase offset condition, and the results
were then averaged across simulation runs per condition.

To evaluate the recall performance of the model, the
hippocampal weights from the auditory to the visual sub-
group after learning were averaged between 2.75 and 3 s
(one theta cycle) after stimulus onset. As shown in Figure
3AI, weights after stimulus onset increase significantly in
the 0° phase offset condition compared with all other (out-
of-phase) conditions. In the 0° phase offset condition, in-
creases in weights are rhythmic at 4 Hz. This is because
both inputs are synchronized with the inhibitory phase of
theta. Neurons of both groups rarely fire at the excitatory
phase of theta (i.e., the LTD-inducing phase); therefore,
weight changes are mainly positive until weights reach their
maximum. This is also reflected by the hippocampal firing
activity during learning for the group of neurons correspond-
ing to visual inputs. After stimulus onset, an increase in firing
of the visual neurons in the 0° phase offset condition is evi-
dent across time because of the weight change (Fig. 3Bi),
which leads to changes in the input current for Iy, (see
Materials and Methods).

Figure 3Ci shows mean weights simulated for each phase
offset condition compared with experimental data from
Clouter et al. (2017) and Wang et al. (2018). Consistent with
both experimental datasets, the model shows the highest
memory performance for the 0° phase offset condition rela-
tive to the other three out-of-phase conditions. Moreover, the
model successfully replicates the previously observed pat-
tern that memory performance in the out-of-phase condi-
tions (90°, 180°, and 270°) did not differ from each other.
The fact that the recall performance in the 90° and 270°
phase offset conditions does not differ from the perform-
ance in the 180° phase offset condition could be caused
by the interaction between theta phase-dependent and
STDP learning. Inputs of auditory neurons on visual neu-
rons in the 90° and 270° phase offset conditions are less
synchronized with the LTP phase within a theta cycle; thus,
the synaptic changes are weighted less by corresponding
theta phases. As synaptic weight changes decay exponen-
tially across time, the resultant small weight changes will
decay drastically when the next visual stimulation peak in-
duces substantial spiking events, given that the delay be-
tween auditory and visual stimulation peak is >50 ms.

We note the difference, however, between the modeled
and empirical data, whereby the model shows relatively
larger differences between the in-phase and out-of-phase
conditions compared with the experimental data. This
could be because this version of the model had zero
noise (i.e., it assumed a perfect transmission of rhythmic
activity from the sensory channels to the brain as well as a
perfect alignment of the hippocampal theta rhythm to the
sensory input). Both are unlikely to be the case in the
human brain, which is expected to show trial-by-trial vari-
ability to rhythmic sensory input (Wang et al., 2018). To
model the variability of sensory-transmitted rhythms, we
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Figure 3. Recall performance of the model as a function of the phase offset condition when stimulus inputs are modulated at theta
frequency (4 Hz). Ai, Hippocampal weight change from the auditory to the visual subgroup during learning. Weights from the audi-
tory to the visual subgroup increase significantly in the 0° phase offset condition after stimulus onset. The weights after learning are
averaged between 2.75 and 3 s after stimulus onset (gray shaded area) to evaluate the recall performance of the model. Aii, Same
as in Ai, but the weight change is from the visual to the auditory subgroup. Bi, Firing rate of hippocampal visual neurons responding
to the auditory stimulus during learning. Bii, Same as in Bi, but the firing activity is from hippocampal auditory neurons responding
to the visual stimulus during learning. The phase offset conditions in both Ai and Bi represent phases of auditory (A) to visual (V),
while the phase offset conditions in both Aii and Bii represent phases of V-A. Shaded error bands represent the Standard error of
the mean (SE). C, Mean of weights from the auditory to the visual subgroup after learning from 384 simulations and empirical data
from Clouter et al. (2017) and Wang et al. (2018). Accuracy is normalized by subtracting the mean over all 4 phase offset conditions
to make the between-studies data more comparable (i.e., to correct for differences in absolute memory performance between stud-
ies). Ci, Simulations of pure input frequency (4 Hz), hippocampal frequency (4 Hz), and EC phase offset (180°) from hippocampal
theta. Cii, Simulations of input frequencies randomly drawn from normal distribution with a mean of 4 and an SD of 0.015 * 4, a pure
hippocampal frequency of 4 Hz, and EC phase offset of 180° from hippocampal theta. Ciii, Simulations of a pure input frequency of
4 Hz, hippocampal frequencies randomly drawn from normal distribution with a mean of 4 and an SD of 0.02, and EC phase offsets
randomly drawn from normal distribution with a mean of 180° and an SD of 0.167. Error bars represent the SE. See Extended Data
Figure 3-1 for the results that the hippocampal weight change is converted to the memory decision index.
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Figure 4. Hippocampal weight change between groups and firing activity for single hippocampal neurons in each phase offset con-
dition at theta frequency (4 Hz). A, Hippocampal weight change between a random selected neuron of the auditory subgroup and a
neuron in the visual subgroup during learning. The neurons are bidirectionally connected. The solid black line represents the weight
change from the auditory neuron to the visual neuron. The dashed black line represents the weight change from the visual neuron
to the auditory neuron. B, In each phase offset condition, the first two line plots show the stimulus inputs and the ongoing hippo-
campal theta oscillation during learning. Raster plots represent the firing activity of the same neurons shown in A, in each phase off-
set condition, respectively. See also Extended Data Figure 4-1 for the hippocampal weight change between groups and firing
activity for single units in the delta and alpha frequency-modulated conditions.

generated a normal distribution that centered at 4 Hz, with
an SD of 0.015 multiplied by 4 as noisy input frequencies
(see Materials and Methods). Incorporating such noise
sources led to a better fit of the simulated data to the empir-
ical data (Fig. 3Cii). Additionally, we modeled the variability
of hippocampal theta by varying theta frequency (i.e., using
a normal distribution centered at 4 Hz with an SD of 0.02). In
addition, the EC phase offsets relative to ongoing theta was
also randomized with a normal distribution centered at 180°
with an SD of 0.167. Again, the simulation results showed a
pattern more similar to that observed in the empirical studies
(Fig. 3Ciii). The patterns of simulated memory decision index
are similar to the pattern of mean weights (Extended Data
Fig. 3-1A).

A prediction made by our model is that the theta syn-
chronization-induced learning effect is bidirectional. As
shown in Figure 3, Aii and Bii, weights from neurons of
the visual subgroup to neurons of the auditory subgroup
also increase significantly in the 0° phase offset condi-
tion compared with the out-of-phase conditions, as does
hippocampal firing activity during learning for the neu-
rons of the auditory subgroup. Although small weight in-
creases are shown in the 90° and 270° phase offset
conditions, the weights are very low compared with the
0° condition. The small increases might be because the
visual stimulus is always in phase with the inhibitory
phase of theta. Therefore, the weight change from the
visual neurons might be able to be accumulated if firing
happens. This prediction could be tested in a human be-
havioral experiment where memory is cued with the
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visual stimulus (i.e., the paired auditory stimulus needs
to be recalled).

Figure 4A shows synaptic weight changes between ran-
domly selected auditory neurons and their connected vis-
ual neurons in each phase offset condition during learning.
Weights in the 0° phase offset condition increase bidirec-
tionally. As shown in Figure 4B, both auditory and visual
neurons receive corresponding inputs at the inhibitory
theta phase in the 0° phase offset condition. Raster plots
show the spike events of the same neurons in Figure 4A,
which demonstrates that both auditory and visual neurons
become more activated over time in the 0° phase offset
condition because of increased synaptic weights.

Simulated hippocampal weight change reproduces
theta specificity of the phase synchrony-induced
memory enhancement

We tested whether our model would also show theta
specificity of the phase offset effects, as revealed in the
study by Clouter et al. (2017). More specifically, Clouter et
al. (2017) showed that the difference in memory perform-
ance between in-phase (0°) and out-of-phase (90°, 180°,
270°) conditions is specific to theta stimulation and is not
observed for a slower (1.7 Hz) or faster (10.5 Hz) frequency.
We therefore fed two cosine waves with the same phase
offsets as above, but modulated their frequencies at 1.7 Hz
(delta) and 10.5Hz (alpha) instead of at 4 Hz (theta). This
was done to prevent the chosen frequency bands occur-
ring in a harmonic relationship with 4Hz (Pletzer et al.,
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Figure 5. Recall performance as a function of the degree of phase synchronization in the theta-modulated condition and other con-
trol conditions. Ai, Data from Clouter et al. (2017) showing recall accuracy when the movies and sounds were flickering in synchrony
(S) or out of synchrony (A) at delta, theta, and alpha frequencies. Aii, Aiii, Mean of weights from the auditory to the visual subgroup
after learning from 384 simulations. Aii, Simulations of pure input frequencies (delta, 1.7 Hz; theta, 4 Hz; alpha, 10.5Hz); hippocam-
pal frequency, 4 Hz; and EC phase offset, 180° from hippocampal theta. Aiii, Simulations of pure input frequency, 4 Hz, hippocam-
pal frequencies randomly drawn from normal distribution with a mean of 4 and an SD of 0.02, and EC phase offsets randomly
drawn from normal distribution with a mean of 180° and an SD of 0.167. Stimulus input strength increases as an exponential func-
tion of stimulus modulation frequency for lower frequencies (see Materials and Methods), delta (1.65Hz stimulus strength, 1.75),
theta (4 Hz stimulus strength, 1.76), and alpha (10.47 Hz stimulus strength, 2.02). Bi, Data from the study by Clouter et al. (2017)
showing recall accuracy when the movies and sounds were presented at 0° and 180° phase offsets or were unmodulated. Bii, Biii,
Mean of weights from the auditory to the visual subgroup after learning from 384 simulations. Bii, Simulations of pure input frequen-
cies, hippocampal frequency of 4 Hz, and EC phase offset of 180° from hippocampal theta. Bii, Simulations of pure input frequency
of 4 Hz, hippocampal frequencies randomly drawn from normal distribution with a mean of 4 and an SD of 0.02, and EC phase off-
sets randomly drawn from normal distribution with a mean of 180° and an SD of 0.167. All error bars represent the SE. Black dots
represent hippocampal weights after learning. Gray dots represent hippocampal weights averaged between —1.75 and 0 s during
prestimulus baseline. See Extended Data Figure 5-1 for simulations of pure input and hippocampal frequencies, but noise was intro-

duced to the phase offsets between two input stimuli.

2010). To compare these results with the data from the
study by Clouter et al. (2017), we averaged simulated hip-
pocampal weights after encoding across the three out-of-
phase conditions (90°, 180°, and 270°) to yield a single
asynchronous measure (Fig. 5Aii). The modeled results re-
plicated the pattern observed by Clouter et al. (2017) in
showing that the memory difference between synchronous
and asynchronous conditions is significantly greater at
theta compared with the other two frequencies (Fig. 5Ai,
Aii). Moreover, the model replicates the findings of Clouter
et al. (2017) in showing that memory performance in the
synchronous condition at theta is better than in the same
conditions of the two control frequencies. This suggests
that synchronous stimulation improves memory specifi-
cally in the theta frequency, reflecting coordinated timing
of external inputs relative to hippocampal theta. Given that
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the alpha-modulated and delta-modulated inputs do not
coincide with the LTP phase during learning, firing could
lead to LTP or LTD, or, alternatively, half-weighted LTP and
LTD (Fig. 1A, Extended Data Fig. 4-1, network connectivity
and activity dynamics between single units in the delta
and alpha frequency-modulated conditions). Therefore,
only synchronization at the preferred frequency of the
hippocampus is more likely to induce effective associa-
tive learning.

Next, we modulated the stimulus inputs at more frequen-
cies (beta, 18.335Hz; low gamma, 41.236 Hz; high gamma,
71.771Hz) with more phase offset conditions (45°, 135°,
225°, 315°), which allows us to explore the learning behav-
ior of the model as a function of stimulus frequency and
phase offset condition. This enhances our understanding
of the interaction of the theta phase-dependent and the
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STDP learning mechanisms more comprehensively. The
results of this simulation are shown in Figure 6. In the theta
frequency-modulated conditions, learning in the 45° and
315° phase offset conditions is benefited because of stim-
ulation closer to the theta inhibitory phase. This learning
advantage is bidirectional. Learning in the phase offset
conditions that are between 90° and 270° was very low be-
cause of less synchronous stimulation relative to the LTP
phase, as well as the exponential decay of weights be-
cause of the STDP learning rule. The learning advantage of
the synchronous stimulation condition, compared with the
asynchronous conditions is specific to theta-modulated in-
puts. As input modulation frequencies get faster, learning
increases somewhat in asynchronous conditions (e.g., 45°
or 90° phase offset conditions) as the delays between pre-
synaptic and postsynaptic neurons firing are within the
optimal time window for STDP. Moreover, weights from au-
ditory neurons to visual neurons are higher when the audi-
tory stimulus leads over the visual stimulus, whereas the
pattern is reversed when the visual stimulus leads over the
auditory stimulus. This effect is particularly pronounced in
higher stimulation frequencies (>10Hz), which is consist-
ent with the STDP learning rule (Markram et al., 1997; Bi
and Poo, 1998). However, because of the role of theta
phase-dependent plasticity, learning in any other frequency
than 4 Hz could not reach the maximum, as happened in the
theta synchronous condition.

Our model also replicates findings from another control
experiment of Clouter et al. (2017) showing that flickering
visual and auditory stimuli at 4Hz in synchrony boosts
memory beyond a natural nonflickering condition (Fig.
4Bi). To simulate this, two constant stimulus inputs were
fed into NC auditory and visual neurons during encoding.
The length of the input stimuli was reduced to 1.5 s to
control for the amount of overall stimulus presentation
time in the flickering condition (i.e., the screen was essen-
tially blank for half of the time because of the flicker).
Figure 5Bi reveals that simulated hippocampal weights
after learning are higher in the 0° phase offset condition
than in either the 180° phase offset condition or the non-
flickering condition. Because of the role of EC modulation in
filtering NC inputs to be more active in the theta LTP phase
and less active in the theta LTD phase (see Materials and
Methods), the constant inputs result in substantial associa-
tive learning compared with the baseline. However, they are
still less optimal than the theta synchronized inputs, which
is consistent with the empirical data, confirming that the
theta synchrony-enhanced memory effect is indeed a result
of maximally optimizing input timing relative to the hippo-
campal theta oscillation. Figure 5, Aiii and Biii, shows that
the patterns still hold after adding noise into hippocampal
dynamics and input phases. Moreover, the patterns resem-
ble the empirical data better than before adding noise,
which is reflected in a smaller difference between the theta
synchronous condition and the other conditions. The pat-
terns are also replicated by a simulated memory decision
index (Extended Data Fig. 3-1B), although performance is
zero in the out-of-phase conditions. This is because of the
fact that a threshold was set by the top 10% of values
across trials in all conditions.
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Theta phase-dependent and STDP learning rules are
necessary to reproduce the theta-induced memory
effect

We compared the recall performance of the model to two
alternative versions. The first is a model of purely theta
phase-dependent learning. For this version, we eliminated
the STDP component such that synaptic weights are modi-
fied solely depending on hippocampal theta phase. For ex-
ample, if a hippocampal neuron from the auditory subgroup
fires during the inhibitory (i.e., LTP-inducing) phase, synap-
ses between this neuron and its connected visual neurons
will be potentiated, whereas the synapses between the
neuron and its connected visual neurons will be depressed
if it fires during the excitatory phase (i.e., LTD-inducing
phase). Hippocampal weights for the four phase offset
conditions were fit to the two empirical datasets (Clouter et
al., 2017; Wang et al., 2018) using linear least squares.
Figure 7, Ai and Bi, shows that the theta phase-dependent
learning-only model does not fit the empirical data as well
as the full model. The aforementioned result is likely be-
cause of the fact that memory performance for the theta
phase-only model increases depending on the degree
to which the inputs overlapped with theta LTP phase.
Weights in the 90° and 270° phase offset conditions are
therefore slightly better than in the 180° phase offset condi-
tion but is worse than in the 0° phase offset condition. We
conducted F tests to statistically compare the fitting of the
theta phase-only model with the fitting of the full model.
The residual sum of squares (RSS) for the theta-only ver-
sion was significantly larger than the RSS for the full model
fitting to Clouter et al. (2017) theta-phase learning-only ver-
sus full (F1,3=17.11, p <0.05) and the fitting to Wang et al.
(2018) theta-phase learning-only versus full (F 3 =233.90,
p <0.05). We suggest that this outcome arises because
learning is canceled in the 180° phase offset condition, as
the auditory inputs cause firing at theta LTD phase, where-
as firing at 90° and 270° lead only to a reduction in the pos-
itive weights, compared with firing exactly at theta LTP
phase (i.e., 0°).

Next, we created a version of the model (i.e., the STDP-
only model), where all elements relating to theta-modulated
plasticity were removed. In this version of the model,
weight changes can occur at any time, completely inde-
pendent of theta phase, if spike timing between a sending
neuron and a receiving neuron is within a short time win-
dow (<50 ms). This means that if enough spikes overlap in
time between inputs, learning strength will not differ be-
tween phase offset conditions. To enlarge the spike-timing
gap between two inputs in each phase offset condition so
the impact of STDP alone can be evaluated, we adjusted
the amplitude of the 4 Hz cosine wave to be between —1
and 1 (as opposed to 0 and 1; Extended Data Fig. 7-1),
which effectively narrows the time window for spiking. This
leads to the largest gap in firing between two groups of
neurons in the 180° phase offset condition because there
is no overlap in spiking between the two groups. A few
spikes overlapped in the 90° and 270° phase offset condi-
tions, but the difference is that the spikes in the auditory
group of the 90° condition are leading over the spikes
in the visual group, whereas in the 270° condition, the
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continued

Figure 6. Mean hippocampal weight change between groups as a function of phase offset condition at A, delta frequency; B, theta fre-
quency; C, alpha frequency; D, beta frequency; E, low gamma frequency; and F, high gamma frequency. After learning, weights were
averaged across 48 simulations and between 2.75 and 3 s after stimulus onset. Stimulus input strength increases as an exponential func-
tion of stimulus modulation frequency for lower frequencies (see Materials and Methods) delta (1.65 Hz stimulus strength, 1.75), theta
(4 Hz stimulus strength, 1.76), and alpha (10.47 Hz stimulus strength, 2.02). Stimulus input strength increases as a logarithmic function of
stimulus modulation frequency for higher frequencies (see Materials and Methods) beta (18.34 Hz stimulus strength, 2.78), low gamma
(41.24 Hz stimulus strength, 3.55), and high gamma (71.77 Hz stimulus strength, 4.08). Error bars represent the SE.

neurons of auditory group firing are lagging behind those  phase offset condition to the 180° and 270° phase offset
of the visual group. Therefore, LTP in the synapses from  conditions, with memory performance not being different
auditory to visual groups is expected to occur in the 90°  between 180° and 270° phase offset conditions. However,
phase offset condition. In contrast, LTD should mainly = memory performance is also enhanced for the 0° phase
occur in the synapses from auditory to visual groups in  offset condition, where memory performance appears
the 180° and 270° conditions. This is confirmed by  slightly lower compared with the 90° condition. This might
Figure 7, Aii and Bii, which shows enhanced memory be because of the complete overlap in neurons firing be-
performance in the 90° phase offset condition, whereas  tween two groups in the 0° condition. Since theta phase
recall performance decreases exponentially from the 90°  does not modulate weight changes anymore, such complete
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Figure 7. Model comparisons in recall performance between the full model and two alternative versions. A, Mean of weights from
the auditory to the visual subgroup after learning simulated by two versions of the model was fit to the data from the study by
Clouter et al. (2017). Ai, The full model was compared with a theta-phase learning-only version of the model. Aii, Same as Ai, but
the comparison was between the full model and an STDP-only version of the model. B, Same as A, but the mean of weights from
the auditory to the visual subgroup after learning simulated by two versions of model was fit to the data from the study by Wang et
al. (2018). All simulations were done with pure input frequency of 4 Hz, hippocampal frequency of 4 Hz, and EC phase offset of 180°
from hippocampal theta. All error bars represent the SE. See Extended Data Figure 7-1 for the model comparisons between the full
model and the STDP-only model when the range of input strength was between 0 and 1.
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overlapping would lead to a reward and punishment
simultaneously, hence balancing at a similar level in weights
as in the 90° condition. As a result, the model with STDP
learning mechanisms produces only a poor fit to the em-
pirical data compared with the full model. F tests showed
that RSS for the STDP-only version is significantly larger
than the RSS for the full model [fitting to Clouter et al.
(2017), STDP only (input range, —1 and 1) versus full:
F,3=23.08, p<0.05; fitting to Wang et al. (2018),
STDP only (input range —1 and 1) versus full: F4 5=52.69,
p <0.05). Therefore, implementing both STDP and theta
phase-dependent learning mechanisms is essential to
replicate the theta-induced memory effect from human
episodic memory experiments.

Discussion

We present a simple model involving a hippocampal
system that implements STDP learning, where LTP and
LTD are modulated by opposing phases of an ongoing
theta oscillation. The model reproduces important find-
ings from a hippocampal cell culture study showing that a
brief burst of a few spikes at opposing theta phases indu-
ces LTP and LTD, respectively (Huerta and Lisman, 1995).
Using parameters fitted to reproduce these rodent data,
we can replicate several key findings from human epi-
sodic memory studies (Clouter et al., 2017; Wang et al.,
2018). The simulated hippocampus received inputs from
two different groups of neocortical neurons, visual and au-
ditory neurons that are modulated at the same frequency
as the hippocampal theta frequency. Synchronizing the in-
puts to be in phase with the fluctuation of theta phase-de-
pendent LTP induces more effective hippocampal synaptic
connectivity, compared with when the inputs are de-
synchronized. Such learning effects induced by phase
synchronization were present only when the inputs
were modulated at the same frequency as hippocam-
pal theta but not at alpha or delta frequencies that do
not modulate hippocampal LTP or LTD. Moreover, our
model replicates the result that synchronizing input at
theta frequency improved memory compared with un-
modulated input, suggesting that the theta phase-induced
memory effect is highly attributed to the hippocampal dy-
namics rather than purely perceptual binding (Clouter et
al., 2017). To simulate the exact pattern of recall accuracy
observed in the human episodic memory studies, the
hippocampus must have both synaptic modification
mechanisms. On the one hand, the theta phase-dependent
learning-only model fails to replicate the pattern that learn-
ing in the 90°, 270°, and 180° conditions did not differ from
each other, as these conditions seemingly benefit from the
additional subtlety that STDP brings with regard to slight
differences in spike timing. On the other hand, STDP learn-
ing alone shows that learning only depends on presynaptic
and postsynaptic inputs timing. Therefore, both the 0° and
90° phase offset conditions show enhanced learning, com-
pared with the 180° and 270° conditions, hence failing to
reproduce the empirical findings.

Theta phase-dependent plasticity as implemented in our
model separately modulates the two components of STDP:
LTP and LTD. Such modulation by opposing theta phases
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is inspired by several theta learning models. Hasselmo et
al. (2002) and Ketz et al. (2013) modeled the theta phase
reversal between hippocampal subregions and demon-
strated its functional utility in memory formation. In the
model of Hasselmo et al. (2002), phase differences be-
tween EC and hippocampal CA1 either encourages LTP
within hippocampus CA3 to CA1 in an effective encoding
phase or blocks this activation pathway in favor of en-
couraging cortical activation through the reverse path-
ways in an effective retrieval phase. Thus, theta phase
reversal efficiently separates encoding and retrieval, en-
abling pattern separation of overlapping memories. Ketz
et al. (2013) modeled similar hippocampal theta dynam-
ics, additionally showing that theta-phase learning is
more effective for error-driven learning compared with
purely Hebbian learning, thus showing how theta can fur-
ther hone accurate memory formation in an iterative
manner. Another model in this line of thought operates at
a more theoretical level with the aim of solving some is-
sues arising from competing and overlapping represen-
tations in neural network learning (Norman et al., 2006).
Rather than modulating specific neuronal pathways, the
model capitalizes on the general function of oscillations
in rhythmically varying levels of inhibition. The model of
Norman et al. (2006) is able to solve competition between
overlapping memories by showing how an increase in inhibi-
tion can strengthen target memories, while a decrease in inhi-
bition can weaken competitors. Thus, theta, which Norman
et al. (2006) hypothesize to be the candidate mechanism
for modulating network stability in this way, can efficiently
perform pattern separation on a population simply via dis-
tinct phases for excitation and inhibition. While our model
does not focus on the role of theta phase in recurrent
medial-temporal lobe pathways, or on some key hippo-
campal functionality such as pattern separation and error-
driven learning, we are able to show how preferential
stimulus encoding can be achieved through the extrapola-
tion of theta-induced effects at the neuronal level alone
(i.e., when overlapping sensory input is in phase with
theta-modulated LTP, then weights are stronger than
when input is out of phase with these LTP fluctuations).
We do this by marrying the notion of reward and punish-
ment from STDP dynamics with the theta dynamics from
the models of Hasselmo et al. (2002) and Norman et al.
(2006), where distinct phases of theta provide contrast-
ing functional windows that are vital for continued net-
work stability when creating new memories. By exploring
the emergent network properties that arise from these
changes at the cellular level, we hope to show the multifac-
eted role that the theta frequency might play in memory
formation, from both network and cellular perspectives.
This model is a continuation of the previous Sync/
deSync model (Parish et al., 2018). Instead of receiving in-
puts from the NC populations that represent preferred
and nonpreferred concepts, the two hippocampal sub-
groups receive inputs from the corresponding NC sub-
groups that represent visual and auditory stimuli. It has
been suggested that most hippocampal neurons are mo-
dality invariant (Suthana and Fried, 2012). However, to
make the model less complex yet remain possible to
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capture the general learning dynamic, each hippocampal
subgroup receives a unimodal input. The visual and audi-
tory stimuli used in the studies by Clouter et al. (2017) and
Wang et al. (2018) were video and sound clips that con-
tain complex contents (i.e., documentary images and
music) and were not semantically related. It is highly likely
that the neurons in each hippocampal subgroup code the
representation rather than the modality information of
each unimodal stimulus. Our model suggests that after
learning, the two representations are successfully inte-
grated, which the hippocampus needs to bind the seman-
tically unrelated information into a coherent memory
representation (Staresina and Davachi, 2009).

In the Sync/deSync model, though LTP and LTD are
modulated by opposing phases of the ongoing theta
rhythm, LTD happening at the theta peak is applied by a
global passive decay. The passive decay is an exponen-
tial function that is multiplied by the complement of theta
phases, which leads to maximal weight decay at theta
peak and 0 at theta trough. The current model replaces
this with an active theta phase-specific LTD, which is cru-
cial to replicate the key findings from the study by Clouter
et al. (2017), namely that the phase synchrony-induced
memory advantage is specific to theta-modulated stimu-
lus inputs. The Sync/deSync model from Parish et al.
(2018) could replicate the behavior from the empirical
data when stimuli were modulated at 4 Hz but failed to
replicate another key finding of Clouter et al. (2017),
namely that the memory enhancement was specific to the
theta in-phase condition and was not present if stimuli
were modulated at delta or alpha frequencies. When stim-
uli are modulated at nonhippocampally preferred frequen-
cies (i.e., outside of theta), neuronal firing at the theta LTD
phase is more likely to happen, and is less likely to happen
at the LTP phase. The active theta phase-specific LTP
and LTD thus allow more potentiation of synapses when
stimulus inputs are theta modulated and in synchrony,
and more LTD when stimulus inputs are modulated with
delta and alpha frequencies, although they are in syn-
chrony. This in turn allows the Sync/deSync model to be
much more sensitive to very slight differences in the tim-
ings of concurrent stimuli, which was not an immediate
concern during its original conception as a first proof-
of-principle model that related oscillatory dynamics to
human episodic memory formation.

In rodents, LTP and LTD can be induced by burst stimu-
lation at opposing hippocampal theta phases, respectively
(Pavlides et al., 1988; Huerta and Lisman, 1995; Holscher
et al., 1997; Hyman et al., 2003). In humans, theta-phase
synchronization can enhance episodic memory perform-
ance (Clouter et al., 2017; Wang et al., 2018), as well as
contingency knowledge between a conditioned stimulus
(CS) and an aversive unconditioned stimulus, and affective
rating on the CS in a fear-conditioning task (Plog et al.,
2022). Our model can account for data from both rodents
and humans, which connects human episodic memory be-
havior to synaptic modifications induced by non-neuro-
physiological stimulation in the animal brain. Our model
provides an explanation for the findings in human electro-
physiological studies, which show that hippocampal theta
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synchronization supports episodic encoding, especially
when there is need to form arbitrary associations (Staudig|
and Hanslmayr, 2013; Backus et al., 2016; Kota et al,,
2020). Though those findings are correlational rather than
causal, our model suggests that theta synchronization
links to stronger synaptic weights between corresponding
hippocampal neurons after encoding. Our model predicts
that to induce substantial LTP in synapses between hippo-
campal neurons, cortical inputs must be in phase with the
fluctuation of LTP. In contrast, if any input is desynchron-
ized with the oscillatory changes of LTP, synaptic weights
are very weak between the hippocampal neurons corre-
sponding to those inputs. The phase of the hippocampal
theta oscillation is reset to coordinate the timing of inputs
with time windows of LTP, which is a key characteristic in
our model to optimize learning. Indeed, hippocampal theta-
phase resetting has been found to occur after stimulus
onset during memory encoding (Rutishauser et al., 2010).
Further, Kota et al. (2020) show in an intracranial EEG (iEEG)
study that the ongoing hippocampal theta oscillation phase
was reset to support episodic encoding. Such a phase reset
indicates a mechanism for inputs that is more likely to
undergo LTP (Rizzuto et al., 2003; McCartney et al., 2004;
Mormann et al., 2005). Moreover, a rodent study recently re-
vealed that using visual rhythmic stimulation at gamma
frequency (40 Hz) can entrain gamma activity in the hippo-
campus and preserve hippocampal neurons and synapses
(Adaikkan et al., 2019). Our model suggests that this could
also happen in the human hippocampus, where theta phase
is reset by sensory stimuli, thus aligning stimulus inputs to
be more likely to induce LTP and form associations.
Investigating the cellular mechanisms of human learning
and memory is challenging as it is relatively difficult to ac-
cess human single neurons in vivo. Although there is evi-
dence on STDP in the human hippocampus in vitro showing
that LTP was induced in a wider time window compared
with rodent hippocampal STDP (Silva et al., 2010). It is still
unclear whether the same STDP rule applies in the human
hippocampus in vivo. In our model, the classical STDP rule
observed in the rodent hippocampus is implemented (Song
et al.,, 2000; Bi and Poo, 2001; Parish et al., 2018). Our
model efficiently forms new associations in a one-shot man-
ner as required by episodic memory. In human single-neu-
ron studies, neuron firing selectivity in the medial temporal
lobe was extended to the learned, associated contextual
pictures or temporal sequences (Ison et al., 2015; Reddy et
al., 2015). Synaptic plasticity is very likely to be the circuit
mechanism supporting episodic formation, which provides
evidence that neuronal mechanisms of memory formation
might be universal across species. However, our model
predicts that STDP alone will result in a similar perform-
ance between 0° phase offset and 90° phase offset con-
ditions, since LTP and LTD can happen at the same time
if spikes are completely overlapped. Therefore, the two
learning mechanisms, theta phase-dependent plasticity
and STDP, are both essential to reproduce the empirical
findings. They might interact to support episodic binding.
STDP is a passive learning process so that weight changes
happen at any time. However, if combined with theta
phase-dependent learning, an active learning mechanism,

eNeuro.org



eMeuro

the model accurately reproduces the empirical data. This is
consistent with the notion that theta oscillations might
compress the neural events that have happened on longer
timescales, thus enabling STDP in action (Hansimayr et al.,
2016). In the rodent hippocampus, the LTP component of
STDP is dependent on spike timing triggered during a
theta oscillation, but not during a low-frequency activity
(Wittenberg and Wang, 2006). This is consistent with our
model, which shows that the learning effect is specific to
theta-modulated inputs and all other conditions modulated
by non-theta frequencies showed similarly low perform-
ance. Interestingly, a recent iEEG study showed that in the
human hippocampus, cofiring of neurons at 20-40 ms indi-
cated successful episodic memory formation, while cofir-
ing at a longer delay of 60ms resulted in forgetting.
Moreover, such a subsequent memory-related cofiring
effect was specific to the neuron pairs that were coupled
to distal theta and local gamma oscillations. Reversal of
the order of the neuron pairs resulted in an LTD-like ef-
fect, where a shorter delay resulted in subsequent forgetting
(Roux et al., 2022). In the human hippocampus, the interac-
tion between the two learning mechanisms, STDP and theta
phase-dependent plasticity, likely provides an explanation
for the role of the hippocampus in actively coordinating the
timing of input arrival, hence binding the inputs into long-
term memory.

Our model allows us to explore the interaction between
STDP and theta phase-dependent learning beyond repro-
ducing the empirical data by modulating inputs with more
frequencies and phase offset conditions. As the modula-
tion frequency becomes faster, learning from auditory to
visual neurons is enhanced when the auditory stimulus
leads with a short delay over the visual stimulus, while the
pattern is reversed when the visual stimulus leads. This is
consistent with the STDP model. However, learning in the
higher frequency-modulated conditions is restricted by
the theta phase-dependent learning rule, since firing does
not always happen at the theta inhibitory phase. Therefore,
the learning benefit in the higher frequencies is reduced
compared with the learning benefit in the theta-synchro-
nous condition. Future experiments where multisensory
stimuli are modulated at higher frequencies and memory is
cued with different sensory modalities can test the predic-
tion if the resultant memory performance is more like
STDP, as observed in our simulations. Another prediction
that arises from our model is that the theta-phase synchro-
nization-induced memory effect should be bidirectional.
That is, synaptic connectivity from visual to auditory neu-
rons (and auditory to visual neurons) is boosted by firing
synchronously at the inhibitory theta phase. Learning in
the three out-of-phase conditions is very low because of
the nonoptimal timing of firing relative to the ongoing
theta phase, and relative to the spike timing of receiving
neurons.

We simulated our data by matching the stimulus input
frequency with the hippocampal theta frequency. Our em-
pirical data showed that there was variability in sensory
entrainment. We therefore modeled the variability of
input frequencies as well as hippocampal theta dynam-
ics. Unsurprisingly, such variability weakened synaptic
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weight changes. This variability might come from attention-
al modulation (Tiitinen et al., 1993; Muller et al., 2006) or
neocortex—hippocampus feedback loops where hippo-
campal theta rhythms entrain the neocortex to allow more
optimal information transmission from the neocortex to the
hippocampus (Sirota et al., 2008). This could be tested by
directionality analyses in further experimental work using
the same paradigm and recording hippocampal and corti-
cal activity, or by implementing additional modules in future
models. Our model reveals fluctuations of hippocampal
weight change when inputs match with the hippocampal
dynamics in different degrees of synchronization. Both
inputs and the hippocampal theta are modeled with con-
tinuous 4 Hz cosine waves. However, empirical studies
suggest that, compared with the clear theta peak in ro-
dent studies, human hippocampal theta shows a less
clear peak frequency with smaller peak height, and less
continuity (Watrous et al., 2013; Qasim et al., 2021). Our
model uses a small population of neurons that could limit
the match between the hippocampal and input frequen-
cies. A larger neuron population might be able to capture
the interaction between continuous inputs and disconti-
nuity of hippocampal theta. As discussed above, hippo-
campal theta might be entrained by external sensory
stimuli to coordinate spike timing. Future modeling and
empirical work should investigate to what degree hippo-
campal theta and the frequency of rhythmic sensory in-
puts benefit from matching to optimize learning.

In conclusion, our model successfully reproduced re-
sults from human episodic memory studies that show a
causal role of theta-phase synchronization in episodic
memory formation. Our findings provide new and impor-
tant computational evidence for a combined role of two
well known synaptic plasticity mechanisms to modulate
theta phase-dependent memory effects in humans (i.e.,
STDP and theta phase-dependent plasticity).
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