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Abstract 

Episodic memories are rich in sensory information and often contain integrated information 

from different sensory modalities. For instance, we can store memories of a recent concert with 

visual and auditory impressions being integrated in one episode. Theta oscillations have 

recently been implicated in playing a causal role synchronizing and effectively binding the 

different modalities together in memory. However, an open question is whether momentary 

fluctuations in theta synchronization predict the likelihood of associative memory formation 

for multisensory events. To address this question we entrained the visual and auditory cortex 

at theta frequency (4 Hz) and in a synchronous or asynchronous manner by modulating the 

luminance and volume of movies and sounds at 4 Hz, with a phase offset at 0° or 180°. EEG 

activity from human subjects (both sexes) was recorded while they memorized the association 

between a movie and a sound. Associative memory performance was significantly enhanced in 

the 0° compared to the 180° condition. Source-level analysis demonstrated that the physical 

stimuli effectively entrained their respective cortical areas with a corresponding phase offset. 

The findings suggested a successful replication of a previous study (Clouter et al., 2017). 

Importantly, the strength of entrainment during encoding correlated with the efficacy of 

associative memory such that small phase differences between visual and auditory cortex 

predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that 

theta oscillations serve a specific function in the episodic memory system: Binding the contents 

of different modalities into coherent memory episodes. 
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Significance Statement 

How multi-sensory experiences are bound to form a coherent episodic memory representation 

is one of the fundamental questions in human episodic memory research. Evidence from animal 

literature suggests that the relative timing between an input and theta oscillations in the 

hippocampus is crucial for memory formation. We precisely controlled the timing between 

visual and auditory stimuli and the neural oscillations at 4 Hz using a multisensory entrainment 

paradigm. Human associative memory formation depends on coincident timing between 

sensory streams processed by the corresponding brain regions. We provide evidence for a 

significant role of relative timing of neural theta activity in human episodic memory on a single 

trial level, which reveals a crucial mechanism underlying human episodic memory. 
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Introduction 

A week after seeing your favorite band in concert, whilst sitting in your office, you mentally 

travel back and re-experience the band playing your favorite song. Episodic memory is the 

machinery that allows us to form, hold and revisit such rich, often multisensory, memories 

(Tulving, 2002). Yet sensory information is processed in specialized brain regions distributed 

across the cortex, which raises the fundamental question of how the different sensory 

elements are bound into a coherent memory representation and, more importantly, what 

affects the likelihood of that association being made. In this study, we address this question 

using a recently developed multisensory entrainment paradigm (Clouter et al., 2017). We 

show that memory formation for dynamic audio-visual events can be predicted by momentary 

fluctuations in theta phase synchronization between sensory regions. 

 

The hippocampus plays a fundamental role in episodic memory formation (Scoville and 

Milner, 1957) and receives highly preprocessed information from virtually all sensory 

modalities (Moscovitch, 2008; Muzzio et al., 2009). This makes it a likely region supporting 

the binding function in memory. Importantly, within the hippocampus synapses are more 

likely to undergo modification if the inputs are active at the same time (Bliss and 

Collingridge, 1993). Theta oscillations – a dominant signal in the hippocampus (Jacobs, 

2013) – synchronize neural ensembles (Buzsáki, 2010) and thus likely establish the 

synchrony required to effectively induce synaptic plasticity. Studies in rodents suggest that 

synaptic plasticity depends on the phase of the ongoing theta rhythm. Stimulation in the 

hippocampus yields either long-term potentiation (LTP) or long-term depression (LTD), 

depending on whether stimulation is applied at the peak or trough of the theta phase, 

respectively (Pavlides et al., 1988; Huerta and Lisman, 1995; Hölscher et al., 1997; Hyman et 

al., 2003).This theta-phase-dependent learning mechanism has sparked considerable interest 
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in human memory research and is an important component of several computational models 

of human memory (Hasselmo, 2005; Norman et al., 2006; Parish et al., 2018). However, 

direct evidence for such a theta-dependent synchronization mechanism in human memory is 

scarce. Such direct evidence would have to show two things: (i) externally synchronizing/de-

synchronizing sensory regions in theta frequency impacts memory formation and (ii) 

momentary fluctuations in inter-areal phase synchronization predict memory formation. By 

using a multisensory entrainment paradigm, Clouter et al. (2017) successfully provided 

evidence on the first hypothesis. Auditory and visual brain regions were entrained at theta 

frequency (4 Hz) and at intended phase offsets (0°, 90°, 180°, and 270°) by 

amplitude/luminance modulated multisensory stimuli. Clouter et al. (2017) showed that such 

neural entrainment could impact associative memory performance on an averaged trials level, 

such that trials from the 0° phase offset condition were significantly better memorized 

compared to the other phase offset conditions (90°, 180° and 270°). Importantly, such 

memory enhancement was only shown when the stimuli were modulated at 4 Hz but not at 

other frequency bands (1.7 Hz or 10.5 Hz).     

 

A crucial question, which the previous study was unable to answer is whether on a single trial 

level the strength of entrainment would be related to the memory outcome. Specifically, can 

the variance in single trial synchronization explain to some extent the variance in memory 

performance? Such a finding would provide a more direct link between theta phase 

synchronization and associative memory formation, and would support the causal role of 

relative timing between cortical inputs and theta oscillations for human episodic memory 

formation. To address this question we here used the same paradigm as in Clouter et al 

(2017) while recording participants’ electrical brain activity using 128 channel EEG.  
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Materials and Methods 

Participants 

Thirty-one healthy English-speaking young adults participated in the experiment (15 male; 

mean age: 21.48 years; range: 18 – 29 years), which was an entirely new group of 

participants who did not take part in any experiment reported in Clouter et al. (2017). All 

participants had normal or corrected-to-normal vision and normal hearing. One participant 

was ambidextrous; all other participants were right-handed. Four participants were given 

course credits via the University of Birmingham’s Psychology Research Participation 

Scheme. The remaining 27 participants were paid £6 per hour for their participation. The data 

from three participants were excluded because of their poor, chance-level memory 

performance. The data from one participant was excluded due to a technical problem during 

EEG recording. The data from another three participants were excluded due to poor EEG data 

quality. The data from the remaining 24 participants were retained for the final data analysis. 

 

Stimulus Material 

The visual and auditory stimuli used were taken from the same pool as those used in 

Experiment 3 of Clouter et al. (2017). Movie clips (N=192) were presented for three seconds 

in total 76 frames at a frame rate of 25 frames/s. The luminance of the movie clips was 

modulated from 0% to 100% with at 4 Hz with sine wave, with all movie clips initially 

starting at 50% luminance. On each trial, concurrent with the presentation of the movie, one 

of 192 sound clips was presented for three seconds, with a lag of 40 ms (i.e. starting 40 ms 

after the start of the movie). This 40 ms lag was necessary to account for the fact that 

auditory stimuli are processed faster than visual stimuli, and therefore to ensure a lag at the 

targeted phase difference of 0 and 180 between auditory and visual cortex (Clouter et al., 

2017). The amplitude of the sound clips was modulated from 0% to 100% at 4 Hz with a sine 
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wave, with all sound clips starting at 0% amplitude, and ramping in linearly. Each sound was 

modulated both at 0° and 180° phase offsets from sine-wave-modulated movies (accounting 

for the 40ms lag for the auditory stimuli). Each sound clip was from one of the eight sound 

categories: acoustic guitar, choir, movie soundtracks (two), electric piano, electric guitar, 

synthesizer, and an orchestra. Each sound category consisted of 24 sound clips. Each sound 

within a sound category was randomly assigned to a phase offset modulation with the 

constraint that the number of sounds for each phase offset modulation was equal. Each movie 

clip was randomly paired with a sound. The random assignment of phase offset modulation to 

a sound and a movie to a sound was done before the experiment and consistent across all the 

participants.  

 

The experimental apparatus and stimulus presentation were identical to that used in 

Experiment 3 of Clouter et al. (2017). The experiment was programmed with MATLAB 

(R2013a; The Mathworks, Inc., Natick, MA, USA) using the Psychophysics Toolbox 

extensions (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). Presentation of visual stimuli 

were on a 21-inch CRT display with an nVidia Quadro K600 graphics card (875 MHz 

graphics clock, 1024 MB dedicated graphics memory; Nvidia, Santa Clara, CA, USA). 

Participants sat approximately 60 cm from the center of the monitor. The screen refresh rate 

of the monitor was 75 Hz. Auditory stimuli were presented with insert earphones (ER-3C; 

Etymotic Research, Elk Grove Village, IL).  
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Figure 1. Stimulus material of associative memory encoding task. A, An example of 

visual and auditory stimuli presented in the associative memory encoding task. Top: Movies 

were luminance modulated with a sine wave, and so flickered visually at 4 Hz. Bottom: 

Sounds were amplitude modulated with a sine wave, and “flickered” at 4 Hz. The movie and 

the sound are flickering in phase (i.e., with a 0° phase offset). B, Sine-wave-modulated visual 

(red) and auditory (blue) stimuli. Left: the sound clip was amplitude modulated at 0° phase 

offset from the sine wave that modulated the luminance of the movie. Right: the sound clip 

was amplitude modulated at 180° phase offset from the since wave that modulated the 

luminance of the movie. Note, that the auditory stimulus always lagged 40ms with respect to 

the visual stimulus, which is not shown here for illustration purposes. 

 

Experimental Procedures 
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Following the provision of informed consent, participants were prepared for EEG data 

collection, and were given instructions for, and familiarized with the tasks. During the formal 

experiment, participants were monitored by a web camera connected to a monitor in an 

adjoining EEG control room.  

 

The experiment consisted of 12 blocks of an associative memory task, followed by synchrony 

judgment and unimodal source localizer tasks (see below). Each associative memory task 

block comprised an encoding phase, a distractor phase and an associative memory recall test 

phase. On each trial during the encoding phase, participants were presented with one of 16 

movies along with one of 16 sound clips. Each trial started with a fixation cross with an inter-

trial-interval between one and three seconds. Then, a sound-movie pair was presented for 

three seconds. After the presentation, participants were instructed to make a judgement as to 

how well the sound suited the contents of the movie by pressing the number keys on a 

keyboard. The instruction screen was presented until a response was made. The ratings 

ranged from 1 (the sound does not suit the movie at all) to 5 (the sound suits the movie very 

well). Participants were instructed to remember the association between the sound and the 

movie within each trial, upon which their memory would later be tested. Within each block, 

four sounds from four categories were associated randomly with the 16 movies with the 

constraint that the number of sounds for each phase offset condition was equal (i.e. two 0° 

phase offset modulated sounds and two 180° phase offset modulated sounds in one sound 

category).  

 

The distractor phase was presented after the last trial of the encoding phase. Participants were 

presented with a random number on the screen, drawn randomly from 170-199. Participants 

were instructed to count backwards, aloud, by 3 starting from this number, for 30 seconds.  
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Participants were prompted on the screen to stop the distractor phase and start the associative 

memory recall test phase. In each block, the associative memory recall test phase consisted of 

16 test trials, thus testing all of the 16 associations learned during the encoding phase. Each 

trial started with a fixation cross with an inter-trial-interval between one and three seconds. 

Participants were presented with one of the 16 sounds heard during the encoding phase for 

three seconds, along with four still images from four of the movies from the encoding phase. 

Then, participants were instructed to select the movie that was presented with the sound in 

the encoding phase using the number keys 1 through 4. The instruction screen was presented 

until a response was made. The movies from which to choose were, in the encoding phase, all 

presented with a sound from the same sound category.  

 

The block presentation order was counterbalanced to ensure that each block was presented in 

each serial position an equal number of times across participants. Participants were allowed 

to take a break, if required, following each block. After the completion of the 12 associative 

memory task blocks, participants were given additional instructions for a synchrony judgment 

task. In this task participants were presented with 24 sound-movie pairs, drawn from the 192 

sound-movie pairs. During the synchrony judgment task subjects were asked whether they 

could detect the synchrony (in-phase, 0° phase offset) or asynchrony (out-of-phase, 180° 

phase offset) between the flicker of the movie and sound. Participants were instructed to 

indicate asynchrony pressing number key 1 and indicate synchrony pressing 2.  

 

Last, two unimodal source localizer tasks were run. Each consisted of 50 trials of flickered 

sound clips only, or 50 trials of flickered movie clips only. The sound and movie clips were 

drawn from the 192 sounds and movies used throughout the experiment. On each trial, 
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participants were asked to rate how pleasant the sound or movie was by using the number 

keys 1 (the sound or the movie was very unpleasant) through 5 (the sound or the movie was 

very pleasant).  

 

 

Figure 2. Experimental procedure. For each encoding trial, a three-second sound-movie 

pair was presented. Participants were instructed to make a judgment as to how well the sound 

suited the contents of the movie after the presentation of the pair. After 16 encoding trials, a 

distractor task was presented. Participants were instructed to count backwards in steps of 3 

starting from a random number for 30 seconds. Participants were prompted to stop the 

distractor task and start a recall trial. Participants were presented with one of the 16 sounds 

heard during the encoding phase for three seconds while four still images from four of the 

movies from the encoding phase were presented on the screen. Participants were instructed to 

select the movie that was presented with the sound in the encoding phase. The recall test 
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phase also consisted of 16 trials hence testing all of the 16 associations studied in the 

encoding phase. 

 

EEG Recordings and Preprocessing 

EEG was recorded from 128 scalp channels using a BioSemi ActiveTwo system. Vertical eye 

movements were recorded from an additional electrode placed 1 cm below the left eye. 

Horizontal eye movements were recorded from two additional electrodes placed 1 cm to the 

left of the left eye and to the right of the right eye. Online EEG signals were sampled at 1024 

Hz by using the BioSemi ActiView software. The positions of each participant’s electrodes 

were tracked using a Polhemus FASTRAK device (Colchester, Vermont, USA) and recorded 

by Brainstorm (Tadel et al., 2011) implemented in MATLAB.  

 

Offline EEG data was preprocessed  using the Fieldtrip toolbox for MEG and EEG analysis 

(Oostenveld et al., 2011). The continuous EEG data was bandpass filtered between 1 and 100 

Hz and bandstop filtered between 48 – 52 Hz and 98 – 102 Hz to remove potential line noise 

at 50 Hz and 100 Hz. The data were then epoched from 2000 ms before stimulus onset to 

5000 ms after stimulus onset, and downsampled to 512 Hz. Bad channels and trials with 

coarse artefacts were excluded by visual inspection before applying an independent 

component analysis (ICA). In the unimodal conditions, one bad channel was excluded for 

each of five participants. Four bad channels were excluded for another one participant. In the 

multimodal conditions, one bad channel was excluded for each of three participants. Two bad 

channels were excluded for another one participant. Four bad channels were excluded for 

each of another two participants. ICA components suggesting eye movement artefacts and 

regular pulse artefacts were removed from the data. Bad channels were interpolated by the 

method of triangulation of nearest neighbors based on the individuals’ electrode positions. 
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After re-referencing the data to average, trials with artefacts were manually rejected by visual 

inspection. Participants with fewer than 16 artefact-free trials in any of the conditions of 

interest were excluded from further analysis. The mean number of trials remaining in each 

condition were: unimodal sound: 42 (25 – 50), unimodal movie: 42 (26 – 49), multimodal 0 

remembered: 34 (21 – 48), multimodal 0 forgotten: 43 (32 – 55), multimodal 180 

remembered: 31 (22 – 44), multimodal 180 forgotten: 46 (28 – 61).  

 

For three participants who provided their own MRI scans, their head models were created 

based on their structural scans (cf. Michelmann et al., 2016) The MRI scans were segmented 

into four layers, brain, cerebrospinal fluid, skull and scalp by using the Statistical Parametric 

Mapping 8 (SPM8) toolbox (http://www.fil.ion.ucl.ac.uk/spm) and the Huang toolbox 

(Huang et al., 2013). Then a volume conduction model was constructed by calling the ‘dipoli’ 

method implemented in the Fieldtrip toolbox. Individuals’ electrode positions were aligned to 

their head models. For further group analysis across all 24 participants, each individual MRI 

was warped to an MNI template MRI provided by the Fieldtrip toolbox then the inverse of 

the warp was applied to a template dipole grid to have a same location of each grid point for 

each participant in normalized MNI space. For the remaining participants who did not have 

their own MRI scans, the MNI template MRI and a template volume conduction model were 

used. Individuals’ electrode positions were aligned to the template head model. Source 

models were prepared with the template volume conduction model and the aligned 

individuals’ electrode positions.  

 

Unimodal Source Localization 

In the unimodal sound condition, EEG data from the unimodal sound condition was scalp 

current density (SCD) transformed using the finite-difference method (Huiskamp, 1991; 
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Oostendorp and Oosterom, 1996). In addition, the leadfields that were computed based on 

scalp potentials were SCD transformed by applying the transformation matrix that was used 

for transforming the potential data. This step is necessary for source localization and 

reconstruction of data from correlated with brain sources (such as data from auditory sources) 

using the beamforming method (Murzin et al., 2013).  

 

Source activity was reconstructed using a linearly constrained minimum variance (LCMV) 

beamforming method (Van Veen et al., 1997). In the movie condition, source analysis was 

calculated for individual electrode positions, individual volume conduction model and 

normalized grid positions for the three participants who had their MRI scans. For the other 

participants, source analysis was run with individual electrode positions, grid positions and 

template volume conduction model. All the analyses were run on potential (i.e. average 

referenced) data. In the sound condition, source analysis was conducted using SCD-

transformed leadfields on SCD-transformed data. Time series data was reconstructed on 2020 

virtual electrodes for each participant. Event-related potential (ERP) was calculated at each 

virtual electrode for each unimodal condition. Time-frequency analysis was applied to each 

source ERP with a Morlet wavelet (width = 7) using a frequency of interest between 3 and 5 

Hz. Evoked power was averaged between 0.75 and 2.75 seconds post stimulus onset and 

between 3.5 and 4.5 Hz. A baseline condition was created by randomly assigning each trial to 

0°, 90°, 180°, or 270° phase offset by moving the signal onset forward in time by 0, 32, 64, or 

96 samples (0, 62.5, 125, or 187.5 ms) with a restriction that the number of trials in each 

phase offset were approximately equal. The evoked power of the baseline condition was 

therefore expected to be minimal at corresponding auditory and visual sources. The evoked 

power differences were grand averaged across participants and the grand average evoked 

power differences were interpolated to the MNI MRI template. The coordinates for auditory 
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and visual regions of interest (ROIs) were determined by where the maximum grand average 

evoked power differences were shown.  

 

Multimodal Source Reconstruction 

To reconstruct the time series data from auditory sources, the multimodal data was SCD-

transformed. Beamforming analysis has a notoriously poor performance in reconstructing 

highly correlated source activity such as during auditory stimulation. A solution for EEG 

source localization was proposed by Murzin et al. (2013) who suggest that source analysis 

should be computed based on the scalp electrodes over left and right hemispheres separately. 

As a result, the spatial filter that was computed with only left scalp electrodes was applied to 

the left scalp time series data and the spatial filter that was computed with only right scalp 

electrodes was applied to the right scalp time series data. The time series data therefore 

corresponded to the sources of the left hemisphere and right hemisphere, respectively. The 

time series data at the left auditory ROI was extracted at the pre-determined left auditory 

coordinate from the unimodal source localization step. Similarly, data at the right auditory 

ROI was extracted at the pre-determined right auditory coordinate. The signals were then 

averaged across left and right auditory ROIs. The time series data at visual ROI was 

reconstructed without SCD transformation and was extracted at the pre-determined visual 

coordinate.  

 

To solve the problem of random direction of source dipoles caused by the LCMV 

beamformer, each participant’s left and right auditory source ERPs were plotted along with 

visual source ERPs in each phase offset condition. The sign of the source reconstructed time 

series data was flipped in direction if any source ERPs showed the opposite of the expected 

direction of the visual and auditory ERP components (P1, N1 or P2) by multiplying the data 
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in the time series by -1. The same approach was taken if the time series showed the opposite 

of the expected entrainment (with respect to the flicker of the physical stimuli) (e.g. if the 0° 

phase offset condition looked like 180°, or the 180° phase offset condition looked like 0°). 

This flipping procedure was applied consistently across all trials, regardless of condition. A 

control analysis was conducted to confirm that the phase relationships between 0° and 180° 

conditions in the auditory and visual ROIs remained constant between before and after 

flipping. All distributions were non-uniform as indicated by the Rayleigh test. Thus the 

flipping procedure only resulted in a better illustration of the entrainment effect but did not 

bias the results in favor of our hypothesis.  

 

Experimental Design and Statistical Analysis 

The experiment was within-subject design. To test the replication of the behavioral effect of 

phase offset condition (0° vs. 180°) on associative memory performance, a paired-samples t-

test was used. To compute the instantaneous phase differences, the source reconstructed time 

series data were bandpass filtered between 1.5 and 9 Hz. Then, the ERPs were computed for 

each phase offset condition at each source. The Hilbert transformation was applied to the 

source grand averaged ERPs that were redefined in time (1000 ms before stimulus onset to 

4000 ms after stimulus onset). The instantaneous phases were calculated from the Hilbert 

transformed data and unwrapped. The instantaneous phase differences were calculated 

between auditory and visual sources for one second, beginning one second after stimulus 

onset (to avoid influences of onset and offset responses) in each phase offset condition. The 

Rayleigh test and V test were used to test circular uniformity of the instantaneous phase 

differences in each phase offset condition.   
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For the subsequent memory analysis, the Hilbert transformation was applied to the filtered 

single-trial source data. The instantaneous phases of each trial were calculated from the 

Hilbert transformed data and unwrapped. The instantaneous phase differences were 

calculated between auditory and visual sources for one second, beginning one second after 

stimulus onset. The single-trial phase entrainment measure in each phase offset condition was 

computed for each trial and each time point by calculating the resultant vector length of a 

vector that consisted of the data value at the time point and the theoretical phase offset (0° or 

180°). The resultant vector length was collapsed across time between 1 and 2 seconds, 

resulting in one value per trial. A 2 (phase offset condition) x 2 (subsequent memory) 

repeated-measures ANOVA was conducted on the averaged single-trial phase entrainment 

values for remembered and forgotten items in each phase offset condition.  

 

To further test whether the degree of single-trial phase entrainment predicts subsequent 

memory performance, a logistic regression model was fit using the single-trial phase 

entrainment measure as the predictor, and memory performance on each trial as the 

dependent variable, resulting in model slopes for each phase offset condition. These slopes 

were normalized for each participant. The normalized slopes were then averaged between the 

two phase offset conditions for each participant. A one sample t-test was conducted to test 

whether the slopes were significantly larger than 0.  

 

To get a more fine-tuned picture of the relationship between single-trial phase angle and 

memory performance, we calculated the mean phase direction of the time points between 1 

and 2 seconds for each trial. Depending on the mean phase direction of a trial, we sorted the 

trials into four bins, centered at 0°, 90°, 180° and 270° each with a bin width of ±45°. To 

reduce the trial-number bias in each bin, we randomly selected 12 trials (the minimum trial 
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number was 13) from each bin and calculated the proportion of remembered trials out of the 

12 trials in each bin. This procedure was repeated 10 times and averages across these 10 

repetitions were built for each subject to reflect the proportion of remembered trials in each 

phase bin. A repeated-measures ANOVA was conducted on the memory accuracy across the 

four bins.   

 

Results 

Behavioral performance 

We replicated the previous findings (Clouter et al., 2017) by showing that memory 

performance in the 0° phase offset condition was significantly better than in the 180° phase 

offset condition (Figure 3) using a paired-samples t-test, t (23) = 2.069, p = 0.025 (one-

sided). To rule out the influence of perceptual factors on the memory effect, a sensitivity 

index (d’) was computed for perceptual judgment performance on synchronous and 

asynchronous stimuli. One-sample t-tests showed that the d’ for participants’ judgment on 

synchronous stimuli vs. asynchronous stimuli did not differ from zero (synchronous, t (23) = 

1.317, p = 0.201; asynchronous, t (23) = 1.008, p = 0.324). In addition, a paired-samples t-test 

showed that d’ for discriminating synchronous from asynchronous stimuli did not differ from 

d’ for discriminating asynchronous stimuli from synchronous stimuli, t (23) = 0.074, p = 

0.942. These results suggest that participants were unable to discriminate synchronous stimuli 

from asynchronous stimuli, thus ruling out the contribution of basic perceptual confounds to 

the observed memory effect.  
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Figure 3. Associative memory task performance. Proportion of the correctly selected 

movie scenes that were associated with presented sounds in each phase offset condition. Note 

that chance level is at 25%. Error bars represent 95% confidence intervals of means in 0 and 

180 phase offset conditions. Individual data for correct associative memory performance in 0 

and 180 phase offset conditions is shown in grey. 

 

To investigate if participants’ subjective judgment on how well a sound suited the contents of 

a movie influenced memory performance, a 2 (subsequent memory) x 2 (phase offset 

condition) repeated-measures ANOVA was performed on the average rating score. A 

significant main effect of subsequent memory was found (mean rating score in subsequently 

remembered items: 3.038, mean rating score in subsequently forgotten items: 2.827, F (1, 23) 

= 24.224, p < 0.001). A significant main effect was also shown for phase offset, mean rating 

score in 0° phase offset condition, 2.979, mean rating score in 180° phase offset condition, 
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2.886, F (1, 23) = 7.962, p = 0.010. These results suggest that the observed better memory 

performance for 0° phase offset condition compared to 180° condition could be driven by 

perceived semantic congruency between multi-sensory stimuli. To control for this possible 

alternative, we conducted an analysis where the trial numbers in each rating scale were 

equalized between the 0° phase offset condition and the 180° phase offset condition by 

randomly sub-selecting trials for each participant (mean trial number 170, range 148 - 190). 

Associative memory accuracy was calculated based on these selected trials – now equalized 

for semantic congruency – for each participant. This procedure was repeated 10 times. The 

resultant associative memory accuracy was averaged for each participant across 10 

repetitions. The memory advantage in the 0° phase offset condition was still valid, as 

supported by a paired-samples t-test, t (23) = 1.903, p = 0.035 (one-sided), thus confirming 

our original results.  
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Figure 4. Source localization of theta power in the unimodal conditions. Top: Auditory 

sources, MNI coordinates of ROIs:  right, 50, -21, 0; left, -60, -29, 0. Bottom: Visual source, 

MNI coordinates of ROI: 10, -99, 20. Evoked power was averaged over 3.5 and 4.5 Hz, 

between 0.75 and 2.75 s at each virtual electrode in the unimodal movie and sound conditions 

and the baseline conditions (see Materials and Methods). Grand average power differences 

between unimodal conditions and baseline conditions were interpolated to a MNI MRI 

template. The source coordinates were determined by where the maximum grand average 

power differences were. The source plots were generated by the Fieldtrip toolbox and 

MRIcro for OSX (http://www.mccauslandcenter.sc.edu/crnl/mricro). 

 

Phase in sensory cortices is entrained to multi-sensory stimulation 

The ROIs obtained from the unimodal source localization results are shown in Figure 4. 

Multimodal grand average ERP waveforms were extracted from the visual and auditory ROIs 

determined by these unimodal source localization results. Figure 5 shows the grand average 

waveforms for the 0° and 180° phase-offset conditions for the visual and auditory ROIs. 

Rayleigh tests and V tests were conducted for the 0° and 180° phase offset conditions 

separately, using the data points of instantaneous phase differences between auditory and 

visual signals from 1 to 2 seconds (n = 513 samples) as dependent variable. Both tests enable 

rejection of the null hypothesis that the distribution of the phase differences in the 0º phase 

offset condition or the 180º phase offset condition are uniformly distributed; the resultant 

vector length in the 0° condition: 0.9197, p ≈ 0; resultant vector length in 180° condition: 

0.9192, p ≈ 0. The V test further suggests that the distribution of phase differences in each 

phase offset condition has a mean direction of its entrained phase, 0º or 180º (both ps = 0), 

respectively. These results suggest that our paradigm was effective in synchronizing (0º 
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condition) or desynchronizing (180º condition) the auditory and visual cortex in the theta 

frequency, replicating Clouter et al. (2017).  

 

 

Figure 5. Phase differences between auditory and visual sources in each phase offset 

condition. A, Phase differences between auditory and visual sources in 0º offset condition. 

Top: Amplitude normalized grand average ERP signals at auditory (blue) and visual sources 

(red). Middle: Mean resultant vector of instantaneous phase differences between auditory and 

visual sources, between 1 and 2 s (shaded time window on the grand average ERPs) is plotted 

on a unit circle. Bottom: Histogram of wrapped instantaneous phase differences between 

auditory and visual sources, between 1 and 2 s, using 40 equally-sized bins. B, As in A, but 

for the 180º offset condition. 

 

Single trial phase entrainment predicts subsequent memory performance 

To investigate our main hypothesis, i.e. whether phase differences between auditory and 

visual regions predict the likelihood of memory formation, a single-trial phase entrainment 

measure was calculated for each phase offset condition (see Materials and Methods). To this 
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end the resultant vector length for every time point was calculated between the observed 

phase difference (between the auditory and visual cortices) and the phase difference of the 

physical stimuli (i.e. either 0° or 180°). This measure yields values close to 1 for high 

entrainment, where a given trial closely followed the rhythmic stimulation, and values close 

to 0 for low entrainment, where a given trial deviated from the rhythmic stimulation. Figure 6 

illustrates this measure with an example from four single trials. Figure 6A and 6B shows 

single trials from 0° offset condition. The trial for a later remembered stimulus reveals a 

strong entrainment at 0°, while the forgotten trial shows a small value. In contrast, the 

forgotten trial in the 180° offset condition shows a strong entrainment to 180°, whereas the 

remembered trial shows a weak entrainment to 180° (Figure 6C and 6D). This pattern is 

consistent with the notion that 0° is optimal and 180° is non-optimal for the formation of 

associative memories. To test this idea formally, we conducted a 2 x 2 ANOVA with the 

factors phase offset condition (0° vs. 180°) and subsequent memory (hits vs misses), 

expecting to find a significant interaction. Indeed, such a significant interaction between 

phase offset condition and subsequent memory was observed, F (1, 23) = 4.627, p = 0.042. 

Subsidiary paired-samples t-tests showed that this interaction was the result of a trend for 

stronger phase entrainment in remembered trials than forgotten trials in the 0º phase offset 

condition, t (23) = 1.496, p = 0.074 (one-sided), and significantly weaker entrainment in 

remembered trials than in forgotten trials in the 180º phase offset condition, t (23) = -2.165, p 

= 0.021 (one-sided) (Figure 7A). Together, these results reveal that the likelihood of a movie 

and a sound being successfully associated in memory varies with the strength of entrainment. 

Hits were associated with strong entrainment in the 0º phase offset condition but low 

entrainment in the 180º phase offset condition, whereas misses showed the opposite pattern. 
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Figure 6. An example of four single trials in 0º remembered, forgotten conditions and 

180º remembered, forgotten conditions, respectively. A, Top: A band-pass filtered (1.5-9 

Hz) single trial from auditory (blue) and visual (red) sources in 0° offset remembered 

condition. Amplitude was normalized. Bottom: instantaneous phase difference between 

auditory and visual sources at a certain time point 1.5 s of the single trial is plotted on a unit 

circle (red line). Single trial phase entrainment was calculated as the resultant vector length 

between the measured phase difference (red arrow) and the entrained phase offset 0º (black 

arrow), which was 0.9988 in this case. B, same as in A but for 0° offset forgotten; C, same as 

in A but for a 180° offset remembered trial; D, same as in A but for a 180° offset forgotten 

trial. 

 

Another way to describe this interaction is that the closer the audio-visual phase difference in 

a given trial is to 0, the higher the likelihood that the sound and the movie are associated in 

memory. To test this prediction more directly we measured the single-trial phase entrainment 
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to 0º in both phase offset conditions. We then fitted a logistic regression model by using 

single-trial phase entrainment to 0º to predict memory outcome in each phase offset condition 

for each participant. The normalized slopes of each participant were averaged across two 

phase offset conditions. As shown in Figure 7B, one-sample t-tests revealed that the values of 

the slopes were significantly positive, t (23) = 1.958, p = 0.031 (one-sided). This result 

indicates that associative memory performance increases as a function of synchronization 

between the visual and auditory cortex, i.e. the closer their phase difference is to 0º.  

 

To illustrate this relationship between audio-visual synchronization and memory performance 

in a more fine-grained manner, single trials were sorted into four bins centered at 0º, 90º, 

180º, and 270º. To account for possible trial-number bias, we equalized the number of trials 

in each bin by randomly selecting 12 trials from each bin. Then the proportion of 

remembered trials was calculated for each bin with this procedure repeated 10 times for each 

participant. Finally, the proportion of remembered trials calculated at each iteration was 

averaged across those 10 iterations. The results show that the recall accuracy in the 0º bin was 

significantly higher than the accuracy in any of the other three bins (Figure 7C), which did 

not differ from each other. A repeated-measures ANOVA with the factor phase bin (0°, 90°, 

180°, 270°) statistically confirmed this effect on recall accuracy, F (3, 69) = 6.014, p = 0.001. 

Pairwise t-tests showed that accuracy in the 0º bin was significantly higher than in the 90°, 

180°, and 270° bins, t (23) = 3.061, p = 0.006; t (23) = 2.739, p = 0.012; t (23) = 4.293, p < 

0.001. Whereas recall accuracy in the 90°, 180°, and 270° bins did not statistically differ from 

each other (all ps > 0.8). On average the difference between the 0° phase bin and the other 

phase bins is 8%. The effect size (as calculated with Partial Eta Squared h2p) is 0.207, based 

upon F (3, 69) = 6.014, thus indicating a large effect size (Richardson, 2011). Although it is 

unlikely that a patient would subjectively notice such a change in memory performance (see 
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Frerichs and Tuokko, 2006) this effect might be of potential clinical interest for dementia 

research, as a study by Parra et al. (2009) showed that memory in Alzheimer’s patients 

suffers the most for bound relative to single-feature objects (each of the two bound features). 

More generally, this result replicates the behavioral findings of Clouter et al. (2017), and 

suggests further that there is a narrow time window around 0 degrees for phases to 

synchronize in order to optimize the formation of associative memories. 

 

 

Figure 7. Memory performance as a function of phase entrainment. A, Phase entrainment 

measure was averaged between 1 and 2 s for each trial. These single-trial phase entrainment 

values are plotted as a function of subsequent memory (remembered: purple; forgotten: 

green) in each phase offset condition. B, Normalized slopes of logistic regression models for 
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each phase offset condition were averaged between conditions for each subject. The logistic 

regression model was fitted to each subject’s memory performance, against the single-trial 

phase entrainment measure (averaged between 1 and 2 s). The violin plot represents the 

distribution of the averaged normalized slope values. The black horizontal bars represent the 

mean of the data. Individual scatter points represent the averaged normalized slope values for 

each participant. Violin plots were created with the MATLAB extension violin.m (Hoffmann, 

2015). C, Recall accuracy of each phase offset bin that consisted of trials which mean phase 

direction of each trial was 270°, 180°, 90°, and 0°, ±45° respectively. Left: An illustration of 

how the four phase offset bins were defined. Four bins were centered at 0º, 90º, 180º, 270º, 

with a bin boundary of ±45°. Right: Recall accuracy was calculated in each bin. The x-axis 

represents the centered phase angle of each bin. For each trial, the mean phase direction 

between 1 and 2 s was computed. Then, each trial was sorted into one of the four bins 

depending on the mean direction (e.g. if the mean phase direction of a trial was a value 

between -45° and 45°, the trial would be sorted into the 0° bin). The proportion of 

remembered trials was calculated for 12 trials that were randomly selected from each bin for 

each iteration. The recall accuracy was averaged across 10 iterations. 

 

Discussion 

We investigated a fundamental question in the field of memory research, i.e., does the degree 

of theta phase synchronization between visual and auditory cortical regions predict successful 

encoding of associations between visual and auditory information. We used a recently 

developed multisensory entrainment paradigm (Clouter et al., 2017) and replicated the 

findings from Clouter et al. (2017) by showing that episodic memory performance was 

significantly enhanced when the multisensory information was presented synchronously at 4 

Hz. We used the physical sensory stimuli required to be associated to entrain the respective 
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visual and auditory cortices at the intended phase offsets, successfully replicating Clouter et 

al. (2017). Importantly, however, our results go beyond the previous findings of Clouter et al. 

to reveal that the single trial phase synchrony between visual and auditory cortex predicts 

subsequent success on encoding the association between the sensory information into long-

term memory. This finding is crucial because it reveals the underlying mechanism of 

synchronous presentation between sensory stimuli at theta frequency enhancing episodic 

memory. Moreover, the findings provide additional evidence as to the causal role of theta 

phase in human episodic memory formation by showing that synchronized theta activity 

between sensory information processing areas is a critical mechanism to bind multi-sensory 

information into episodic memory on a trial-by-trial basis.  

 

Computational models suggest that the hippocampus binds diverse cortical representations 

into a sparse unified episodic memory representation by rapid synaptic modifications 

between cortical inputs and hippocampal neurons through LTP (McClelland et al., 1995). The 

induction of LTP depends on the coordinated timing of action potentials across populations 

of neurons as demonstrated by the animal literature in vitro and in vivo that stimulation at the 

peak of hippocampal theta phase induces LTP (Pavlides et al., 1988; Huerta and Lisman, 

1995; Hölscher et al., 1997; Hyman et al., 2003). Given the causal role of theta phase in the 

induction of LTP, the relative timing between cortical inputs and hippocampal theta 

oscillations should also play a causal role in human episodic memory formation. However, 

most evidence is correlational and post-hoc (Fell et al., 2003; Rutishauser et al., 2010; Backus 

et al., 2016). Clouter et al. (2017) provided the first causal evidence in humans by showing 

that associative memory performance was significantly better in the 0º condition than the 

180º condition. The present study successfully replicates the findings from Clouter et al. 

(2017) although our effect is weaker and with more variability. One possible reason is that 
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half of our stimuli was not used in Clouter et al. (2017), which might cause variability in 

entraining visual and auditory regions, hence reducing the effect. However, this variability 

allowed us to link trial-by-trial fluctuation in phase entrainment with subsequent memory 

performance. The strength of single trial entrainment in the 0º condition was positively 

related to episodic binding between visual and auditory information in that trial. In contrast, 

for the 180º condition stronger entrainment was related to a failure in memory formation. To 

put it another way, the closer the 4 Hz phase difference between the two sensory regions was 

to 0° the better the memory outcome (Figure 7B). This finding extends our previous results in 

that it directly links the theta phase dynamics with memory performance on a single trial 

level, suggesting that the relative timing in theta neural oscillations is a main driving force 

underlying long-term associative memory formation.  

 

Learning of associations between unrelated elements is highly dependent on the hippocampus 

(Gonzalo et al., 2000; Eichenbaum and Cohen, 2004; Staresina and Davachi, 2009). Although 

we were not able to observe signals from the hippocampus, the hippocampus is strongly 

implicated as the candidate region influencing the subsequent memory effect. Successful 

encoding of associations between cortical inputs happens when the inputs arrive at the peak 

of hippocampal theta phase triggering strong LTP in the synapses (Hasselmo, 2005). In 

human studies, functional connectivity between neocortical areas and the MTL has been 

related to successful episodic encoding (Summerfield et al., 2006; Schott et al., 2013). 

Moreover, item-context binding and integration between new information and old mnemonic 

trace has been suggested to be supported functionally by MTL theta power, as well as theta 

coupling between the MTL and cortical regions (Staudigl and Hanslmayr, 2013; Backus et 

al., 2016). Therefore, the current finding that synchronization between visual and auditory 

theta activity predicts later memory success could reflect that coincident volleys of action 
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potentials terminating in the MTL at similar theta phases, which is then more likely to induce 

hippocampal LTP in the synapses of the respective auditory and visual downstream neural 

ensembles in the MTL.  

 

One could argue that the observed phase synchronization between early sensory areas reflects 

multisensory integration, which captures attention and results in better memory (Senkowski 

et al., 2008). However, the observed interaction between strength of entrainment and 

subsequent memory rules out the explanation that successful encoding of a sound-movie pair 

depends on early sensory level attention. The strength of entrainment to a periodic stimulus is 

positively related to attention, with attention increasing the entrainment response (Müller et 

al., 2006; Lakatos et al., 2008; Saupe et al., 2009; Nozaradan et al., 2012). If attention at the 

sensory level is the sole factor modulating successful memory formation, phase entrainment 

should be significantly stronger for remembered trials than forgotten trials, regardless of the 

phase offset condition (i.e. 0 vs 180), which is not what we observed. Furthermore, the 

interaction effect between subsequent memory and phase offset condition was shown only 

between 1 to 2 seconds after stimulus onset, not before or after. This time course suggests 

that the memory formation was not influenced by early evoked responses or stimulus-related 

phase coupling typically reported in the multisensory integration literature (Senkowski et al., 

2008) but influenced by synchronized theta activity in a later and more sustained fashion, 

which is arguably a mechanism of successful encoding of associations (Summerfield and 

Mangels, 2005).  

 

A remarkable finding is the fact that the degree of phase entrainment showed a reverse 

function of subsequent memory in the 180º condition. This raises the question of what the 

underlying mechanism of the weaker entrainment to 180° for remembered trials is. This 
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perturbation from 180° points towards a resilience mechanism in the brain, preventing it from 

being entrained to a non-optimal phase offset in order to get closer to a more optimal phase 

for forming a memory association (i.e. 0°). Hippocampo-cortical loops are plausible 

candidates for such a mechanism, which fits with fMRI findings showing that increases in 

hippocampal activity are correlated with spatiotemporal desynchronization between elements 

that form a memory (Staresina and Davachi, 2009). Therefore, the hippocampus might put in 

more work when encoding associations between stimuli that are asynchronously presented. 

However, how the hippocampus feeds back the cortical information so that it can avoid being 

entrained remains unknown. A possible explanation could be that the overall hippocampal 

theta power increases when phase difference gets closer to 0° relative to when the inputs are 

strongly entrained to 180°, creates a ‘theta state’ conducive to episodic binding. If this is the 

case, memory should also slightly benefit from 90° and 270° phase offsets. However, when 

sorting single trials into four phase bins corresponding to 0°, 90°, 180° and 270° memory 

performance in the 0° condition was significantly better than in any of the other three 

conditions, with 90, 180 and 270 showing equally poor performance levels. This pattern 

perfectly replicates the pattern obtained by Clouter et al. (2017) and suggests that there is a 

narrow time window around <62.5 ms during which neural events have to coincide in order 

to result in effective memory formation. One such fine grained learning mechanism is Spike-

Timing-Dependent-Plasticity (Song et al., 2000). However, whether STDP is involved in the 

observed effects needs to be further investigated.  

 

In conclusion, our findings support the notion that externally induced inter-regional theta 

phase synchronization supports associative memory formation on a trial-by-trial basis. By 

successfully replicating findings from a previous study that used the same paradigm (Clouter 

et al., 2017), we further show that the degree of multisensory entrainment causes subsequent 
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remembering and forgetting. Stronger entrainment in the 0° condition leads to successful 

memory while stronger entrainment in the 180° condition relates to failure in episodic 

binding. Such a finding supports that human episodic memory formation indeed depends on 

relative timing between the cortical processing of sensory streams, in turn providing a 

powerful tool to predict single trial memory formation based on the performance of 

entrainment on any given trial. With this experimental paradigm, neural synchronization can 

be precisely controlled to test how synchronized neural activity influences recollection vs. 

familiarity and monitor whether the current brain state is at encoding or retrieval (Rizzuto et 

al., 2006; Ezzyat et al., 2017), given the role of different hippocampal theta phases in 

episodic memory processes (Hasselmo et al., 2002; Hasselmo, 2005). Clinically, the 

paradigm could provide a non-invasive and accessible way to enhance episodic memory 

performance via external synchronization in healthy subjects and patients suffering from 

memory disorders such as Alzheimer (Huerta and Lisman, 1995; Iaccarino et al., 2016).  
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