4 research outputs found

    Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma

    Get PDF
    PTEN loss has been associated with poorer prognosis in many solid tumors. However, such investigation in lymphomas is limited. In this study, PTEN cytoplasmic and nuclear expression, PTEN gene deletion, and PTEN mutations were evaluated in two independent cohorts of diffuse large B-cell lymphoma (DLBCL). Cytoplasmic PTEN expression was found in approximately 67% of total 747 DLBCL cases, more frequently in the activated B-cell-like subtype. Nuclear PTEN expression was less frequent and at lower levels, which significantly correlated with higher PTEN mRNA expression. Remarkably, loss of PTEN protein expression was associated with poorer survival only in DLBCL with AKT hyperactivation. In contrast, high PTEN expression was associated with Myc expression and poorer survival in cases without abnormal AKT activation. Genetic and epigenetic mechanisms for loss of PTEN expression were investigated. PTEN deletions (mostly heterozygous) were detected in 11.3% of DLBCL, and showed opposite prognostic effects in patients with AKT hyperactivation and in MYC rearranged DLBCL patients. PTEN mutations, detected in 10.6% of patients, were associated with upregulation of genes involved in central nervous system function, metabolism, and AKT/mTOR signaling regulation. Loss of PTEN cytoplasmic expression was also associated with TP53 mutations, higher PTEN-targeting microRNA expression, and lower PD-L1 expression. Remarkably, low PTEN mRNA expression was associated with down-regulation of a group of genes involved in immune responses and B-cell development/differentiation, and poorer survival in DLBCL independent of AKT activation. Collectively, multi-levels of PTEN abnormalities and dysregulation may play important roles in PTEN expression and loss, and that loss of PTEN tumor-suppressor function contributes to the poor survival of DLBCL patients with AKT hyperactivation

    Effect of Different Water Treatments in Soil-Plant-Atmosphere Continuum Based on Intelligent Weighing Systems

    No full text
    In order to meet the needs of dynamic continuous monitoring of soil-plant-atmosphere continuum (SPAC), a new soil, plant, atmosphere analysis system has been established based on an intelligent weighing system (IWS). Four types of irrigation treatments (90%, 80%, 70%, and 60% of field capacity (FC)) were conducted on lettuce (Lactuca sativa var. ramosa Hort.) for two-season planting experiments. Regarding the soil, the relative system weight of IWS showed a significant linear correlation with the soil volumetric moisture content (SWC) (R2 = 0.64–0.94). When the SWC increased by 1.00%, the soil weight increased by 56–62 g. Regarding plants, the IWS also clearly reflected the changes in plant weight gain, transpiration rate, and stomatal conductance at different growth stages. After verification, the relative errors of the transpiration rate and stomatal conductance measured by the IWS were −9.60–22.30% and −7.20–22.20%, respectively. Regarding the atmospheric environment, the variation trend of the crop evapotranspiration (ETc) based on the IWS and the reference crop evapotranspiration (ET0) calculated with meteorological parameters were consistent. However, the numerical difference was in the uncertainty of the crop coefficient (Kc). The ETc of lettuce under the 80% FC treatment was the highest. Accordingly, a daily online measurement method for Kc was established. The Kc values of lettuce at different growth stages were 0.88, 1.22, and 2.43, respectively. The growth, yield, and water use efficiency (WUE) of crops under 80% FC treatment compared with other treatments significantly increased by 11.07–21.05%, 0.91–9.89%, and 2.16–15.80%, respectively. Therefore, the 80% FC was adopted as the irrigation low limit of potted lettuce. The experimental results provide a theoretical basis for further guiding crop irrigation

    Effect of Different Water Treatments in Soil-Plant-Atmosphere Continuum Based on Intelligent Weighing Systems

    No full text
    In order to meet the needs of dynamic continuous monitoring of soil-plant-atmosphere continuum (SPAC), a new soil, plant, atmosphere analysis system has been established based on an intelligent weighing system (IWS). Four types of irrigation treatments (90%, 80%, 70%, and 60% of field capacity (FC)) were conducted on lettuce (Lactuca sativa var. ramosa Hort.) for two-season planting experiments. Regarding the soil, the relative system weight of IWS showed a significant linear correlation with the soil volumetric moisture content (SWC) (R2 = 0.64–0.94). When the SWC increased by 1.00%, the soil weight increased by 56–62 g. Regarding plants, the IWS also clearly reflected the changes in plant weight gain, transpiration rate, and stomatal conductance at different growth stages. After verification, the relative errors of the transpiration rate and stomatal conductance measured by the IWS were −9.60–22.30% and −7.20–22.20%, respectively. Regarding the atmospheric environment, the variation trend of the crop evapotranspiration (ETc) based on the IWS and the reference crop evapotranspiration (ET0) calculated with meteorological parameters were consistent. However, the numerical difference was in the uncertainty of the crop coefficient (Kc). The ETc of lettuce under the 80% FC treatment was the highest. Accordingly, a daily online measurement method for Kc was established. The Kc values of lettuce at different growth stages were 0.88, 1.22, and 2.43, respectively. The growth, yield, and water use efficiency (WUE) of crops under 80% FC treatment compared with other treatments significantly increased by 11.07–21.05%, 0.91–9.89%, and 2.16–15.80%, respectively. Therefore, the 80% FC was adopted as the irrigation low limit of potted lettuce. The experimental results provide a theoretical basis for further guiding crop irrigation
    corecore