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Abstract
PTEN loss has been associated with poorer prognosis in many solid tumors. However, such investigation in
lymphomas is limited. In this study, PTEN cytoplasmic and nuclear expression, PTEN gene deletion, and PTEN
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mutations were evaluated in two independent cohorts of diffuse large B-cell lymphoma (DLBCL). Cytoplasmic
PTEN expression was found in approximately 67% of total 747 DLBCL cases, more frequently in the activated B-
cell–like subtype. Nuclear PTEN expression was less frequent and at lower levels, which significantly correlated
with higher PTEN mRNA expression. Remarkably, loss of PTEN protein expression was associated with poorer
survival only in DLBCL with AKT hyperactivation. In contrast, high PTEN expression was associated with Myc
expression and poorer survival in cases without abnormal AKT activation. Genetic and epigenetic mechanisms for
loss of PTEN expression were investigated. PTEN deletions (mostly heterozygous) were detected in 11.3% of
DLBCL, and showed opposite prognostic effects in patients with AKT hyperactivation and in MYC rearranged
DLBCL patients. PTEN mutations, detected in 10.6% of patients, were associated with upregulation of genes
involved in central nervous system function, metabolism, and AKT/mTOR signaling regulation. Loss of PTEN
cytoplasmic expression was also associated with TP53 mutations, higher PTEN-targeting microRNA expression,
and lower PD-L1 expression. Remarkably, low PTEN mRNA expression was associated with down-regulation of a
group of genes involved in immune responses and B-cell development/differentiation, and poorer survival in
DLBCL independent of AKT activation. Collectively, multi-levels of PTEN abnormalities and dysregulation may play
important roles in PTEN expression and loss, and that loss of PTEN tumor-suppressor function contributes to the
poor survival of DLBCL patients with AKT hyperactivation.
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Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most common and
heterogeneous type of B-cell lymphoma. Gene expression profiling
(GEP) has classified DLBCL into two molecularly distinctive
subtypes: germinal center B-cell–like (GCB) and activated B-cell–
like (ABC) types, with gene expression profiles resembling those of
normal germinal center B cells and those of mitogenically activated
blood B cells, respectively [1].
The current standard regimen of rituximab, cyclophosphamide,

doxorubicin, vincristine, and prednisone (R-CHOP) has clearly
improved the outcome of DLBCL patients over the past decades [2],
but because some patients with refractory disease or with early relapse
still have worse outcomes [3], further clarification of disease subgroups
with distinct pathology mechanisms is needed. Recent studies showed
that the phosphatidylinositol-3 kinase (PI3K)-AKT pathway was
constitutively activated in 25-52% of DLBCL [4,5], which prompted
us to study the significance of PTEN (phosphatase and tensin
homologue), a major negative regulator of the PI3K/AKT signaling, in
the pathogenesis of DLBCL. PTEN antagonizes PI3K signaling
through dephosphorylation of phosphoinositide-3-phosphate (PIP3).
PTEN deficiency leads to PIP3 accumulation and thereby de-
repression of the PI3K/AKT pathway, which in turn promotes cell
growth, proliferation, angiogenesis, and other cellular processes [6].
The phosphatase activities of PTEN in the plasma membrane are

finely regulated by complex mechanisms. Dynamic PTEN binding to
the plasma membrane, as a critical step for PI3K signaling inhibition
by PTEN, is determined by local PIP2 and PIP3 gradients [7,8]
and PTEN conformation which is regulated by posttranslational
modifications such as phosphorylation, ubiquitination, acetylation,
and SUMOylation. Phosphorylation of the C-terminal tail prevents
PTEN from membrane binding and keeps PTEN inactive in the
cytoplasm [8,9].
PTEN localizes not only to the cytoplasm but also to the nucleus

and other subcellular compartments [8]. PTEN localized in the
nucleus has tumor-suppressive functions in maintaining chromo-
somal stability by up-regulation of RAD51 and interaction with p53
promoting p300-mediated p53 acetylation, independent of its
enzymatic activities against the PI3K/AKT pathway [10]. Several
regulatory mechanisms for PTEN nuclear localization have been
proposed, including passive diffusion, active transport mediated by
major vault protein, nuclear localization signal, interaction with
GTPase Ran, and monoubiquitination of PTEN [8,11,12].

Loss of PTEN function is significantly related to advanced disease,
chemotherapy resistance, and poor survival in patients with prostate,
breast, melanoma, colorectral, esophageal, and head and neck cancers
[13–20]. PTEN can be inactivated by genetic and epigenetic
mechanisms. PTEN is one of the most frequently mutated genes,
and PTEN gene alterations play critical roles in the pathogenesis of
many human cancers [21–25]. In DLBCL, Lenz and colleagues
found that PTEN gene deletion was associated with the GCB subtype
[26]; Pfeifer et al demonstrated that absence of PTEN expression
defines a PI3K/AKT-dependent GCB-DLBCL subtype in both cell
lines and primary samples [27]. However, a few studies have
suggested different prognostic effects of PTEN loss/expression in
small DLBCL cohorts [28–31]. Large-scale studies are needed to
establish the clinical significance of PTEN expression/loss and genetic
abnormalities in DLBCL.

In this study, we analyzed cytoplasmic and nuclear expression of
PTEN protein, PTEN deletions, and PTEN mutations and their
prognostic significance in a large number of patients with de novo
DLBCL treated with R-CHOP, and explored the potential regulatory
mechanisms for PTEN deficiency in DLBCL.

Materials and Methods

Patients
Patients were organized as a part of the International DLBCL

Rituximab-CHOP Consortium Program study, and were selected



0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

PTEN+ GCBGCB ABC PTEN+ ABC

+ +

A

B

D

C

E

F

PD-L1+ DLBCL

G

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

+
0

20

40

60

80

100

n=18 n=87

Figure 1. Analysis of PTEN expression by immunohistochemistry (IHC). (A) Representative hematoxylin and eosin and immunohisto-
chemistry of PTEN expression in GCB-DLBCL and ABC-DLBCL. (B and C) Histograms and comparison of cytoplasmic (Cyto-) and nuclear
(Nuc-) PTEN expression in DLBCL and between GCB/ABC subtypes (training cohort). (D) Cytoplasmic PTEN expression was associated
with higher nuclear PTEN expression in both GCB-DLBCL and ABC-DLBCL. (E) Cytoplasmic PTEN expression was associated with higher
p-AKT expression in GCB-DLBCL and ABC-DLBCL, and inversely associated with survivin expression in ABC-DLBCL. (F) Representative
hematoxylin and eosin and immunohistochemistry of PD-L1 expression in DLBCL. The ABC compared with the GCB subtype had a
significantly higher mean level of PD-L1 expression. Cytoplasmic PTEN expression was associated with a higher mean level of PD-L1
expression in overall DLBCL and in cases with high p-AKT expression. (G) Cytoplasmic PTEN expression was associated with higher mean
levels of Myc, p-STAT3, PI3K, MDM2, and p21 expression in DLBCL. Significant P values are in bold.
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according to the eligibility and exclusion criteria (fulfilling the
DLBCL diagnostic criteria and treated with R-CHOP or R-CHOP–
like therapy, and excluding patients with transformation from lower
grade B-cell lymphoma, primary mediastinal large B-cell lymphoma,
primary cutaneous DLBCL, primary central nervous system DLBCL,
or acquired immunodeficiency) which have been described previously
[32,33]. PTEN staining was achieved initially in 478 cases (training
cohort) and additionally in 269 cases, a later assembled validation
cohort. The institutional review boards of each participating center
approved this study as being of minimal to no risk or as exempt.
Nuclear expression of phospho-AKT-Ser473 (p-AKT, activated form
of AKT) has been evaluated in the training cohort [34] and data were
available in 461 cases. Cell-of-origin classification was according to
GEP and/or immunohistochemistry (IHC) algorithms as described
previously [32,35].

PTEN and PD-L1 Immunohistochemistry
Hematoxylin and eosin–stained slides from DLBCL cases were

reviewed, and representative areas of the formalin-fixed and paraffin-
embedded (FFPE) tissue sections with the highest percentages of
tumor cells were selected for tissue microarray construction and
subject for IHC staining. PTEN expression was evaluated by IHC
using a PTEN antibody (138G6, Cell Signaling). PTEN expression
was analyzed for positive versus negative (i.e., loss of) expression
status, as well as high versus low expression. The cutoff used for high
cytoplasmic PTEN expression was N40% and the cutoff for high

Image of Figure 1


Table 1. Comparison of clinical and molecular features of patients with diffuse large B-cell lymphoma (DLBCL) with and without PTEN cytoplasmic expression in the training cohort

in DLBCL in GCB-DLBCL in ABC-DLBCL in p-AKThigh DLBCL

Cytoplasmic
PTEN+

Cytoplasmic
PTEN¯

Cytoplasmic
PTEN+

Cytoplasmic
PTEN¯

Cytoplasmic
PTEN+

Cytoplasmic
PTEN¯

Cytoplasmic
PTEN+

Cytoplasmic
PTEN¯

n=306 n=172 P n=137 n=101 P n=165 n=69 P n=89 n=18 P

GCB/ABC Subtype
GCB 137 101 .004 41 12 .13
ABC 165 69 48 6

Age, years
b 60 128 76 .63 70 52 1.0 55 22 .88 44 9 1.0
≥ 60 178 96 67 49 110 47 45 9

Sex
Male 190 92 .081 86 55 .23 102 37 .25 56 8 .19
Female 116 80 51 46 63 32 33 10

Stage
I - II 134 85 .21 72 56 .42 60 27 .88 39 5 .41
III - IV 164 80 63 39 99 41 47 11

B-symptoms
No 190 103 .92 95 61 .38 92 40 .88 57 9 .57
Yes 103 57 37 31 65 26 29 7

LDH
Normal 109 51 .12 52 31 .26 56 20 .29 30 4 .28
Elevated 169 110 73 61 93 47 48 14

Extranodal sites
0 - 1 227 126 .64 107 74 1.0 117 51 .74 64 8 .067
≥ 2 71 35 27 18 43 16 21 8

ECOG score
0 - 1 230 124 .89 105 71 1.0 121 51 .71 65 10 .47
≥ 2 46 26 18 12 28 14 15 4

Tumor size
b 5 cm 135 67 .73 62 40 1.0 71 26 .73 35 2 .035
≥ 5 cm 95 51 43 29 52 22 23 8

IPI score
0 - 2 182 101 .76 92 64 1.0 86 35 .89 51 6 .11
N 2 118 61 43 29 75 32 36 11

Therapy response
CR 237 120 .079 105 72 .37 128 46 .10 65 11 .39
PR 35 29 12 16 23 13 13 4
SD 11 11 7 6 4 5 7 0
PD 23 12 13 7 10 5 4 3

Nuclear PTEN expression
0% 69 129 b .0001 30 72 b .0001 39 55 b .0001. 25 13 .0008
N 0% 237 43 107 29 126 14 64 5

TP53 mutations
No 214 115 .044 90 67 .41 121 46 .065 62 13 .81
Yes 51 44 28 27 23 17 12 3

MDM2 expression
≤ 10% 169 119 .001 82 72 .03 86 47 .022 53 10 .75
N 10% 131 47 54 25 77 21 36 8

BCL6 expression
≤ 30% 62 47 .05 12 16 .07 50 31 .025 16 2 .58
N 30% 237 116 124 80 113 36 72 14

BLIMP-1 expression
b 5% 173 116 .033 94 77 .24 78 39 .32 44 15 .017
≥ 5% 118 51 37 21 80 30 43 3

IgA IHC
0% 302 163 .011 134 96 .24 164 65 .012 89 17 .026
100% 4 9 3 5 1 4 0 1

IgG IHC
0% 282 146 .013 126 88 .22 152 56 .015 82 17 .73
100% 24 26 11 13 13 13 7 1

PD-L1 IHC
b 5% 50 48 .003 33 43 .0045 17 5 .62 14 7 .047
≥ 5% 244 117 99 56 142 60 73 11

Abbreviations: LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; IPI, International Prognostic Index; CR, complete remission; PR, partial response; SD, stable disease; PD,
progressive disease; GCB, germinal center B-cell–like; ABC, activated B-cell–like. Significant P values are highlighted in bold.
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nuclear PTEN expression was N30% of tumor cells, which were
determined by the X-tile software (Yale School of Medicine, New
Haven, CT).

Expression of p-AKT, IL-6, PI3K [34], Myc [36], p-STAT3 [37],
MDM2 [38], p21 [39], BLIMP-1 [40], IgA and IgG [41] had been
assessed by previous studies; the cutoff for p-AKThigh expression
(AKT hyperactivation) was ≥70% as described previously [34].

PD-L1 expression was assessed by IHC using a DAKO PD-L1
antibody. The IHC results were scored independently by three
pathologists (J.K., Y.X, and K.H.Y), and final scores were based
on consensus. The cutoff for PD-L1 positivity is ≥5% of tumor
cells.

Fluorescence in situ Hybridization and Gene Sequencing
Fluorescence in situ hybridization (FISH) analysis was performed

and data were available for 359 cases of the training cohort and 248
cases of the validation cohort. To evaluate PTEN gene (chromosome
17p13.1) deletions, a commercial PTEN probe was utilized (Zyto-
Light® SPEC PTEN/CEN 10 Dual Color Probe Z-2078-200;
Zytovision, Bremerhaven, Germany). The ratio of PTEN signals
(green) to CEP10 signals (red) was counted in 200 tumor cells. If this
ratio was lower than 0.81, heterozygous PTEN deletion was
considered to be present. Ratios lower than 0.46 were considered
to be suggestive of homozygous deletions. The ratios were calculated
as ratios below the mean plus three standard deviations of green to red
signal ratios in reference cases (5 tonsils) and subtraction of tumor-
infiltrating T cells, which accounted for 15% of undeleted alleles.

For PTEN sequencing, genomic DNA was extracted from FFPE
tissues of 368 cases and then subjected to Sanger sequencing. The
sequencing results were compared to the National Center for
Biotechnology Information (NCBI) reference sequence
NM_000314 (PTEN) to identify non-synonymous PTEN muta-
tions. Single nucleotide polymorphisms documented by the NCBI
dbSNP database (build 147) have been excluded.

Gene Expression Profiling and microRNA Profiling
Gene expression profiling was performed by using the Affymetrix

GeneChip Human Genome HG-U133 Plus Version 2.0 Array as
described previously (GSE31312) [32,42]. Microarray data were
normalized for further supervised clustering analysis. Multiple t-tests
were used to identify differentially expressed genes between groups
with and without PTEN abnormalities, and the P values obtained
were corrected for the false discovery rate (FDR) using the beta-
uniform mixture method.

microRNA (miRNA) profiling was performed by HTG Molecular
Diagnostics Inc. (Tucson, AZ) using FFPE tissue sections (unpub-
lished preliminary data). miRNAs targeting PTEN are according to the
literature review [43] and TargetScan: http://www.targetscan.org).
Statistical Analysis
The clinical and pathological features of DLBCL patients were

compared using the Fisher’s exact or chi-square test. The unpaired t-
test (2-tailed) was used to compare mean expression levels of
biomarkers between DLBCL groups. Overall survival (OS) was
calculated from time of diagnosis to last follow-up or death due to any
cause. Progression-free survival (PFS) was calculated from time of
diagnosis to disease progression, relapse, or death from any cause.
Patients who were alive and free of disease progression at last follow-
up were censored. Survival analysis was performed using the Kaplan-
Meier method with the Prism 5 program (GraphPad Software, San
Diego, CA), and differences in survival were compared using the log-
rank (Mantel-Cox) test. Multivariate survival analysis was performed
using a Cox proportional hazards regression model with the SPSS
software program (version 19.0; IBMCorporation, Armonk, NY). All
differences with P ≤ .05 were considered statistically significant.

Results

PTEN is Expressed in Both Cytoplasm and Nucleus and
the Cytoplasmic Expression is More Frequently Lost in GCB-
DLBCL

In view of PTEN’s distinct functions in the cytoplasm and nucleus,
we evaluated PTEN expression in the cytoplasm and nucleus
compartments separately. Representative PTEN+ IHC staining
and the expression histogram for the training cohort are shown in
Figure 1, A and B. We found cytoplasmic PTEN expression was
significantly higher than that in the nuclei (Figure 1C). Expression of
cytoplasmic PTEN (Cyto-PTEN+) was observed in 306 (64%) of
478 DLBCL in the training cohort, and showed significant
differences between GCB and ABC subtypes: 57.6% (137/238) of
GCB-DLBCL versus 70.5% (165/234) of ABC-DLBCL (P = .004,
Table 1). The mean level of Cyto-PTEN expression for GCB-
DLBCL was also significantly lower than that for ABC-DLBCL
(Figure 1C). On the other hand, nuclear expression of PTEN (Nuc-
PTEN+) was observed in 280 (58.6%) of 478 DLBCL, including
57.1% (136/238) of GCB-DLBCL and 59.8% (140/234) of ABC-
DLBCL. In contrast with the higher cytoplasmic PTEN expression in
ABC-DLBCL, there was a trend of higher nuclear PTEN expression
in GCB than in ABC DLBCL (P = .072, Figure 1C), although
nuclear PTEN expression significantly correlated with cytoplasmic
PTEN expression (Table 1, Figure 1D). Regardless of the expression
compartments, totally 129 (26.7%) of 478 DLBCL did not have any
PTEN expression (Cyto-PTEN− and Nuc-PTEN−).

To validate the results, we assembled an independent DLBCL
cohort (n = 204). Compared with the training cohort, the validation
cohort showed a similar pattern of PTEN expression, with a slightly
lower frequency of Cyto-PTEN loss, whereas a higher frequency of
Nuc-PTEN loss compared with the training cohort: 25% of DLBCLs
were Cyto-PTEN−, and 69% of DLBCLs were Nuc-PTEN−; 11% of
DLBCLs did not show either cytoplasmic or nuclear PTEN
expression. Consistent with the results in the training cohort, in the
validation cohort cytoplasmic expression is predominant and the
cytoplasmic PTEN and nuclear PTEN expression are significantly
correlated (Supplementary Figure S1A).

Surprisingly, PTEN expression (cytoplasmic and/or nuclear) was
associated with a higher mean level of phospho-AKT-Ser473

protein (p-AKT) nuclear expression but not AKT1 mRNA expression
(Figure 1E and Supplementary Figure S1A for the training and validation
cohort, respectively). However, Cyto-PTEN+ (but not Nuc-PTEN+)
expression was associated with significantly decreased survivin expression
(a downstream target of the PI3K/AKT pathway [44]) in ABC-DLBCL
(Figure 1E) independent of TP53mutation status, which may suggest a
correlation between PTEN expression and decreased AKT function.

Cyto-PTEN+ expression, but not p-AKThigh, PI3Khigh, or Nuc-
PTEN+ expression, showed significant association with PD-L1
expression, which is considered as a tumor immune evasion
mechanism of DLBCL [45] (Table 1, Figure 1F). Conversely,

http://www.targetscan.org
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Figure 2. Survival analysis for PTEN expression/loss in DLBCL with high phosphorylated-AKT expression (p-AKThigh, cutoff: ≥70%). (A)
Loss of PTEN cytoplasmic expression was associated with significantly poorer overall survival rate (OS) in patients with high p-AKT
expression, especially in GCB-DLBCL. (B) Loss of PTEN nuclear expression was associated with decreased progression-free survival rate
(PFS) in GCB-DLBCL patients with high p-AKT expression. This effect was only significant in the group with an International Prognostic
Index (IPI) score≤2. (C) Survival analysis in respect to both cytoplasmic and nuclear PTEN+ status in patients with p-AKThigh GCB-DLBCL.
(D) In GCB-DLBCL cases with cytoplasmic PTEN expression, p-AKT expression level was not prognostic. (E) In GCB-DLBCL patients
without cytoplasmic/nuclear PTEN expression, p-AKThigh expression was associated with significantly poorer survival.
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PD-L1+ cases had a higher mean level of PTEN expression than PD-
L1− cases (P = .0015). Like Cyto-PTEN expression, PD-L1
expression was significantly higher in the ABC subtype (Figure
1F). Cyto-PTEN+ status was also associated with significantly
higher mean levels of Myc, p-STAT3, PI3K, MDM2, and p21/
CDKN1A expression (Figure 1G).

Image of Figure 2


able 2. Comparison of clinicopathologic features of patients with p-AKT overexpressing diffuse large B-cell lymphoma (DLBCL) respective to the status of cytoplasmic or nuclear PTEN expression,
TEN deletion, and PTEN mutation in the training cohort

p-AKThigh GCB p-AKThigh GCB p-AKThigh DLBCL p-AKThigh DLBCL

Cyto-PTEN+ Cyto-PTEN¯ Nuc-PTEN+ Nuc-PTEN¯ PTEN deletion No PTEN deletion MUT-PTEN WT-PTEN

N (%) N (%) P N (%) N (%) P N (%) N (%) P N (%) N (%) P

ariables 41 (100) 12 (100) 33 (100) 20 (100) 7 (100) 75 (100) 9 (100) 74 (100)

ge, years
60 24 (58.5) 8 (66.7) .74 20 (60.6) 12 (60.0) 1.0 3 (42.9) 32 (42.7) 1.0 3 (33.3) 40 (54.1) .3
60 17 (41.5) 4 (33.3) 13 (39.4) 8 (40.0) 4 (57.1) 43 (57.3) 6 (66.7) 34 (45.9)

ex
ale 29 (70.7) 5 (41.7) .09 24 (72.7) 10 (50.0) .14 4 (57.1) 45 (60.0) 1.0 7 (77.8) 45 (60.8) .47
emale 12 (29.3) 7 (58.3) 9 (27.3) 10 (50.0) 3 (42.9) 30 (40.0) 2 (22.2) 29 (39.2)

tage
II 21 (52.5) 3 (30.0) .29 17 (53.1) 7 (38.9) .39 2 (28.6) 27 (39.1) .7 2 (25.0) 26 (36.6) .71
I-IV 19 (47.5) 7 (70.0) 15 (46.9) 11 (61.1) 5 (71.4) 42 (60.9) 6 (75.0) 45 (63.4)

symptoms
o 33 (82.5) 7 (70.0) .4 28 (84.8) 12 (70.6) .28 4 (57.1) 44 (62.0) 1.0 5 (71.4) 46 (64.8) 1.0
es 7 (17.5) 3 (30.0) 5 (15.2) 5 (29.4) 3 (42.9) 27 (38.0) 2 (28.6) 25 (35.2)

DH
ormal 14 (38.9) 2 (16.7) .29 13 (46.4) 3 (15.0) .031 3 (42.9) 31 (47.7) 1.0 2 (25.0) 27 (42.2) .46
levated 22 (61.1) 10 (83.3) 15 (53.6) 17 (85.0) 4 (57.1) 34 (52.3) 6 (75.0) 37 (57.8)

xtranodal sites
- 1 33 (82.5) 5 (50.0) .046 28 (87.5) 10 (55.6) .017 5 (71.4) 45 (66.2) 1.0 4 (44.4) 48 (70.6) .26
2 7 (17.5) 5 (50.0) 4 (12.5) 8 (44.4) 2 (28.6) 23 (33.8) 5 (55.6) 20 (29.4)

COG score
- 1 31 (83.8) 6 (75.0) .62 25 (89.3) 12 (70.6) .23 6 (85.7) 50 (82.0) 1.0 6 (85.7) 52 (78.8) 1.0
2 6 (16.2) 2 (25.0) 3 (10.7) 5 (29.4) 1 (14.3) 11 (18.0) 1 (14.3) 14 (21.2)

umor size
5 cm 14 (53.8) 1 (16.7) .18 12 (52.2) 3 (33.3) .44 3 (50.0) 35 (58.3) .69 2 (66.7) 31 (60.8) 1.0
5 cm 12 (46.2) 5 (83.3) 11 (47.8) 6 (66.7) 3 (50.0) 25 (41.7) 1 (33.3) 20 (39.2)

I score
- 2 28 (68.3) 4 (36.4) .081 25 (75.8) 7 (36.8) .008 4 (57.1) 38 (52.8) 1.0 2 (25.0) 42 (58.3) .13
- 5 13 (31.7) 7 (63.6) 8 (24.2) 12 (63.2) 3 (42.9) 34 (47.2) 6 (75.0) 30 (41.7)

herapy response
R 29 (70.7) 7 (58.3) 1.0 24 (72.7) 12 (60.0) .38 7 (100) 54 (72.0) .18 4 (44.4) 56 (75.7) .11
R 4 3 2 5 0 12 4 10
D 4 0 3 1 0 3 0 5
D 4 2 4 2 0 6 1 3

P53 mutations
o 26 (78.8) 8 (72.7) .69 23 (79.3) 11 (73.3) .71 4 (57.1) 64 (88.9) .02 7 (77.8) 59 (86.8) .61
es 7 (21.2) 3 (27.3) 6 (20.7) 4 (26.7) 3 (42.9) 8 (11.1) 2 (22.2) 9 (13.2)

D-L1 IHC
5% 9 (22.5) 7 (58.3) .031 10 (31.3) 6 (30) 1.0 0 (0) 15 (22.7) .33 13 (19.7) 2 (22.2) 1.0
5% 31 (77.5) 5 (41.7) 22 (68.8) 14 (70) 6 (100) 51 (77.3) 53 (80.3) 7 (77.8)

bbreviations: Cyto-PTEN, cytoplasmic PTEN expression; Nuc-PTEN, nuclear PTEN expression; LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; IPI, International
rognostic Index; CR, complete remission; PR, partial response; SD, stable disease; PD, progressive disease; GCB, germinal-center B-cell–like; MUT, mutated, WT, wild-type.
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Absence of PTEN Expression is Associated with Unfavorable
Clinical Features and Outcomes Only in DLBCL with AKT
Hyperactivation

Clinical features for PTEN+ and PTEN− DLBCL groups are
shown in Table 1 (cytoplasmic expression) and Supplementary Table
S1 (nuclear expression). Cyto-PTEN− expression was not significantly
associated with any clinical parameters (only trend ofmore female sex).
Nuc-PTEN− status was associated with elevated serum lactate
dehydrogenase (LDH) level (P b .0001). In the DLBCL subset with
p-AKT hyperactivation (p-AKThigh) [34], Cyto-PTEN− status was
associated with a larger tumor size (P = .035), and Nuc-PTEN− status
was associated with elevated LDH, extranodal sites N1, ECOG
performance status N1, tumor size ≥5cm, and International Prognostic
Index (IPI) score N2.
Neither cytoplasmic nor nuclear PTEN+ status showed significant
prognostic impact in overall DLBCL. However, Cyto-PTEN− status
was associated with a lower complete remission rate, with a trend of
significance in the overall DLBCL cohort (P = .079), and significantly in
the p-AKThigh ABC-DLBCL subset (P = .0007, Table 1). In p-AKThigh

DLBCL, Cyto-PTEN− status was associated with lower mean levels of
p-AKT (P = .042) and PD-L1 expression (P = .042, Figure 1F), but with
higher frequency of survivin expression (26% vs. 8.9%, P = .031) and
significantly poorer OS (P = .048), particularly in the GCB subtype (P =
.0054) (Figure 2A). Moreover, in p-AKThigh GCB-DLBCL, loss of
nuclear PTEN expression was associated with poorer PFS with
borderline significance (P = .06, Figure 2B), although it was associated
with significantly lower mean levels of antiapoptotic Bcl-2 (P = .0068)
and MDM2 (P = .0011) expression.
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Notably, patients with Nuc-PTEN− GCB-DLBCL more frequently
had IPI N2, extranodal sites N1, and elevated LDH (P = .008, .017, and
.031, respectively) (Table 2). To eliminate the confounding effects by
these unfavorable clinical factors, we further compared survival of Nuc-
PTEN+ and Nuc-PTEN− patients with high and low IPI individually,
and found that Nuc-PTEN− status was associated with markedly shorter
PFS durations only for patients with an IPI ≤2 (P = .0002, Figure 2B).
Incorporating both cytoplasmic and nuclear PTEN+ status in the

survival analysis found Cyto-PTEN but not Nuc-PTEN expression
had significant prognostic impact in p-AKThigh GCB-DLBCL
patients (Figure 2C). However, the significance was lost in
multivariate survival analysis adjusting clinical factors in p-AKThigh

GCB-DLBCL. In contrast, in p-AKThigh ABC-DLBCL, Nuc-
PTEN+ expression was an independent prognostic factor for better
OS (P = .003; hazard ratio [HR] 0.16; 95% confidence interval [CI]
Table 3. Multivariate analysis for PTEN expression (positive or high), PTEN deletion and PTEN
mutations in overall DLBCL, cases with ≥70% p-AKT expression (p-AKThigh), and cases with
≤30% p-AKT expression (p-AKT−)

OS PFS

Variables HR 95% CI P HR 95% CI P

In p-AKThigh ABC-DLBCL
IPI N2 3.28 1.02-10.48 .046 3.84 1.20-12.33 .024
Female .27 .096- .74 .011 .34 .13- .89 .028
Tumor size N5cm 1.91 .67-5.49 .23 1.94 .71-5.28 .19
B-symptoms 10.2 2.67-39.02 .001 6.37 1.88-21.56 .003
*Nuclear PTEN+ .16 .049- .53 .003 .22 .07- .67 .008

In p-AKThigh ABC-DLBCL
IPI N2 3.84 1.20-12.33 .024 2.35 .85-6.51 .10
Female .19 .063- .60 .004 .28 .10- .79 .016
Tumor size N5cm 2.10 .73-6.09 .17 2.12 .79-5.71 .14
B-symptoms 7.27 1.88-28.17 .004 4.42 1.37-14.29 .013
*Cytoplasmic PTEN+ .47 .12-1.77 .26 .53 .14-1.95 .34

In overall DLBCL
IPI N2 2.31 1.63-3.28 b .001 2.28 1.64-3.18 b .001
Female .75 .52-1.07 .12 .72 .51-1.02 .064
Tumor size N5cm 1.15 .80-1.64 .45 1.12 .79-1.57 .53
B-symptoms 1.62 1.12-2.33 .01 1.59 1.12-2.26 .009
*Nuclear PTENhigh .39 .16- .97 .043 .34 .14- .84 .02
Mychigh 2.15 1.49-3.09 b .001 2.10 1.48-2.97 b .001

In overall DLBCL
IPI N2 2.38 1.68-3.38 b .001 2.34 1.67-3.26 b .001
Female .86 .60-1.23 .40 .84 .60-1.19 .33
Tumor size N5cm 1.36 .96-1.92 .084 1.31 .94-1.82 .11
B-symptoms 1.41 .98-2.03 .063 1.39 .98-1.98 .061
*Cytoplasmic PTENhigh 1.19 .84-1.69 .33 1.42 1.02-1.98 0.036

In p-AKT− DLBCL
IPI N2 2.59 1.65-4.05 b .001 2.80 1.81-4.32 b .001
Female .95 .60-1.49 .82 .85 .54-1.32 .47
Tumor size N5cm 1.07 .68-1.69 .77 1.03 .67-1.59 .89
B-symptoms .97 .61-1.56 .90 1.00 .64-1.57 .99
*Cytoplasmic PTENhigh 1.33 .84-2.09 .22 1.62 1.05-2.50 .03
Mychigh 1.71 1.05-2.79 .03 1.63 1.02-2.61 .041

In p-AKThigh DLBCL
IPI N2 4.80 1.78-12.98 .002 3.47 1.51-7.96 .003
Female .48 .21-1.07 .072 .34 .15- .78 .011
Tumor size N5cm 1.38 .63-3.02 .43 1.72 .80-3.71 .17
B-symptoms 2.59 1.12-5.98 .026 3.07 1.36-6.94 .007
*PTEN deletion 4.53 .98-20.89 .052 5.30 .99-28.33 .051
*PTEN mutation 4.53 .97-21.12 .054 3.78 1.02-13.97 .046

Abbreviations: OS, overall survival; PFS, progression-free survival; HR, hazard ratio; CI,
confidence interval; GCB, germinal center B-cell–like; ABC, activated B-cell–like; IPI,
International Prognostic Index.

* Data for PTEN factors are highlighted in bold. Cutoffs for Nuclear PTENhigh and Cytoplasmic
PTENhigh: N30% and N40%, respectively.
0.049-0.53) and PFS (P = .008; HR 0.22; 95% CI 0.07-0.67) after
adjusting clinical factors (Table 3). In the validation cohort, loss of
Cyto-PTEN expression was also associated with signficantly shorter
PFS in p-AKThigh DLBCL (P = .029, Supplementary Figure S1B)
but not in the overall DLBCL cohort. However, in the multivariate
survival analysis adjusting for clinical factors, Cyto-PTEN− status lost
signficance as an independent prognostic factor in the validation p-
AKThigh DLBCL cohort (data not shown).

Consistent with the role of PTEN in suppressing AKT activation
and activity, the adverse prognostic significance of p-AKThigh

expression in GCB-DLBCL that we have reported previously [34]
was only significant in the Cyto-PTEN− GCB-DLBCL (P = .0022
for OS and P = .0029 for PFS, respectively) and Nuc-PTEN− GCB-
DLBCL subsets (P = .12 for OS and P = .0002 for PFS, respectively),
but not in the Cyto-PTEN+ GCB-DLBCL (P = .63 for OS and P =
.18 for PFS, respectively) or Nuc-PTEN+ GCB-DLBCL subset (P =
.89 for OS and P = .50 for PFS, respectively) (Figure 2, D and E and
Supplementary Figure S2).

High Cytoplasmic PTEN Expression is Associated with Poorer
Survival Only in DLBCL Patients with Low AKT Activation

In contrast to the results above indicating that loss of PTEN
expression was associated with unfavorable clinical outcomes only in
DLBCL with AKT hyperactivation, in the p-AKT-deficient training
subcohort (p-AKT−, cutoff: ≤30% which was approximate to the
mean p-AKT expression level, 33%), high Cyto-PTEN expression
(Cyto-PTENhigh, cutoff: N40%; frequency: 36%) was associated with
inferior OS (P = .014) and PFS (P = .012), which was only significant
in the GCB subtype (Figure 3A). In contrast, high Nuc-PTEN
expression (Nuc-PTENhigh, cutoff: N30%%; frequency: 5.2%) was
associated with better OS and PFS in p-AKT− DLBCL cases
(Figure 3B), overall GCB-DLBCL cases, and the p-AKT− GCB-
DLBCL subset.

Notably, Cyto-PTENhigh expression was associated with higher
mean levels of p-AKT (in both GCB and ABC), PI3K (P = .039),
Myc (in GCB only), p21 (P = .0011), MDM2 (in both GCB and
ABC), and p-STAT3 (in ABC only) expression at the protein level
(Figure 4A) but not at the mRNA level, and associated with both Bcl-
2 protein (P = .0021) and BCL2 mRNA (P = .0003) expression.
Restricting the analysis in the p-AKT− DLBCL subset in which
PTENhigh expression showed prognostic effect, Cyto-PTENhigh

expression remained to be associated with high Myc (an unfavorable
prognostic factor [36]) and p-AKT expression, significantly only in
the GCB subtype (Figure 4A). Nuc-PTENhigh expression was
associated with higher mean levels of p-AKT and PI3K but not
Myc expression, and the association with p-AKT expression was
significant only in the ABC subtype (Figure 4B).

In multivariate survival analysis adjusting for clinical parameters,
Cyto-PTENhigh remained as an unfavorable factor for PFS in
overall DLBCL and the p-AKT− DLBCL subcohort (P = .009; HR
1.77; 95% CI 1.15-2.72), whereas Nuc-PTENhigh was a favorable
factor for PFS independent of clinical factors only in the overall
cohort (P = .032; HR 0.37; 95% CI 0.15-0.92). After adding the
factor of Mychigh in the Cox regression models, Cyto-PTENhigh

remained as an independent factor for unfavorable PFS only in p-
AKT− DLBCL cases but not in the overall cohort, whereas Nuc-
PTENhigh was a favorable factor for both OS (P = .043; HR 0.39;
95% CI 0.16-0.97) and PFS in the overall cohort but not in the p-
AKT− DLBCL subcohort (Table 3).
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Figure 3. Survival analysis for high levels of PTEN expression in DLBCL. (A) DLBCL patients with high cytoplasmic PTEN+ expression
(cutoff: N40%) had a significant poorer progression-free survival rate (PFS) compared with patients with low PTEN expression. The
adverse prognostic effect was only significant in DLBCL with no or low p-AKT expression (p-AKT−, cutoff: ≤30%), and GCB-DLBCL with
low p-AKT expression. (B) High nuclear PTEN+ expression (cutoff: N30%) was associated with trend of better PFS in DLBCL with no or
low p-AKT expression. The favorable prognostic effect was only significant in patients with no or low p-AKT expression.
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Figure 4. Biomarker expression analysis for high PTEN expression. (A) High cytoplasmic PTEN expression (N40%) was associated with
higher mean levels of p-AKT, Myc (in GCB only), PI3K, p-STAT3 (in ABC only), Bcl-2, and MDM2 expression. Only in DLBCL with no or low
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nuclear PTEN expression (N30%) was associated with higher mean levels of p-AKT (in ABC only) and PI3K expression. Significant P values
are in bold.
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Compared with the training cohort, the validation cohort had
a higher frequency of Cyto-PTENhigh expression (52%) and
lower frequency of Nuc-PTENhigh expression (1.5%). As in the
training cohort, in the validation cohort Cyto-PTENhigh

expression was associated with higher mean levels of p-AKT
and Myc expression (Supplementary Figure S2A). In p-AKT−

cases (≤30% p-AKT expression), Cyto-PTENhigh expression was
associated with trend of poorer survival, whereas Nuc-PTENhigh

was associated with trend of better survival. In contrast, in p-
AKT+ cases (N30% p-AKT expression), Cyto-PTENhigh
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Table 4. Gene expression profiling analysis

PTENlow vs. PTENnot low in
GCB-DLBCL (FDRb0.01, fold N2)

PTENlow vs. PTENnot low in
ABC-DLBCL (FDRb0.01, fold N1.74)

Up-regulated Down-regulated Up-regulated Down-regulated

Signaling, receptors, B-cell
development and differentiation

PTEN, PTEN/PTENP1, STAP1, BLNK, FCRL1,
KLHL6, LPAR5, RGS1, RGS13, FCRL5, BANK1

PTEN, PKN2, RANBP9, MAP3K13, RGS13

Transcriptional regulation,
mRNA processing and regulation

INTS7, PABPC1, CBFB, EZH2, ZNF117,
IGF2BP3, HNRNPD, MYBL1

RFX7, ZEB1, HIF1A, TBL1XR1, OVOS/OVOS2,
SMCHD1, MBD4, TCF4, PRDM2

Cell cycle NIPBL, CASC5 GPSM2, DPY30/MEMO1, SMC1A, PTP4A1,
C7orf11, ZYG11B, MARK4, SFI1

Immune response, inflammation HLA-DMA/HLA-DMB, HLA-DPA1, HLA-DOA,
SERPINB9, HLA-DQB1, LYZ

POLR3E

Metabolism, ribosomes AMD1, RPL15, PGK1, SAMM50, CIRH1A C11orf54, AMD1, FUT8, RPL15, PDE7A,
DERA, PNPLA8, C21orf57, SLC16A1

Posttranslational modification,
protein degradation, transport

IDE, LRMP, CSE1L, UBE2G1, FBXO6 CCDC91, C18orf55, OSBPL8, USP1

Actin, cytoskeleton, cell adhesion,
extracellular matrix, motility

ANXA7, RABEP2, SYNE2, TMEM163,
FGD6, ENPP2, POSTN

ANXA7, RABEP2, KIAA1217, DMD

Unknown function ZDHHC11 FAM82B FAM82B, C12orf66, RP6-213H19.1, BAGE2/BAGE4

MUT-PTEN vs. WT-PTEN in
DLBCL (FDRb 0.05)

MUT-PTEN vs. WT-PTEN in p-AKThigh

DLBCL (FDRb 0.25)

Upregulated Downregulated Upregulated Downregulated

Signaling, receptors BOC, GPC4, GLRA3, PTPRF, C7orf16,
ACVR1C, UNC5C

DENND4C ACVR1C, ARHGAP22, OR10J1, CMTM6 IL6ST

Transcriptional regulation SOX10, DPPA4, TFAP2A NFATC3, ARHGEF10, GATA5, HSFY1/HSFY2
Cell growth and differentiation,

development
ADCY1, URG4, RABGAP1, AHRR

Immune response, inflammation PDCD6 MYD88 XPNPEP2
Metabolism FAM19A5 PGS1 NOX1, CPB1, PPP1R3E
mRNA processing and regulation,

protein folding, posttranslational
modification, degradation

C2orf30, AFF2, CUL7, RNF7,
USP46, PSMG4, ELAVL4, HERC6

ICMT UNKL, PAPOLG, RBM22, NXF2,
RNF8, RBMXL2

Transport, actin,
cytoskeleton, motility

MYO1C, DYNLRB1, STARD13, TTLL2, RHO KIF5B RAB9B, SLC17A4, ACTR3B

Cell adhesion, extracellular
matrix, ion channels

PCDHGB5, NLGN3, GJA3, ATP4B KCNA4, TMC2, PCDHGB5, KRTAP19-1, KCNIP4

IncRNA, pseudogene,
unknown function

ADCK2, PCA3, LOC283140, HYDIN/HYDIN2,
PRAMEF12, LOC100129175, C20orf12,
TMEM174, HEATR4, HSPC072/LINC00652,
C7orf45, LOC219731, HMCN2, LOC404266

LRPPRC, DCTN6 C16orf70, LOC728868, LRRN3, LOC151146,
C6orf195/LINC01600, HERV-V1,
FLJ37035, CECR9, TIGD1L, LOC100240734,
SMEK3P, C21orf37/LINC01549, TMEM220

Abbreviations: MUT-PTEN, PTEN mutated genotype; WT-PTEN, PTEN wild-type genotype; FDR, false discovery rate.
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expression was associated with significantly better PFS, whereas
Nuc-PTENhigh (only two cases) was associated with poorer PFS
(Supplementary Figure S2B). In the multivariate analysis, only
Cyto-PTENhigh expression in the p-AKT+ subcohort showed
trend toward being an independent factor for better PFS (P =
.085; HR 0.30; 95% CI 0.076-1.18).

PTEN Gene Deletions and Mutations are Infrequent in
DLBCL but are Independent Unfavorable Prognostic Factors
in p-AKThigh DLBCL
To understand the mechanisms for PTEN deficiency in DLBCL,

PTEN gene deletion status was assessed in a total of 607 cases of
DLBCL (359 plus 248 from the training and validation cohorts,
respectively), and PTEN mutation status was assessed in 368 cases
from the training cohort.
Totally 44 PTEN mutations were detected in 39 (10.6%) of 368

patients, including 23 (12.2%) patients with GCB-DLBCL and 16
(9.0%) patients with ABC-DLBCL. Of these, 8 (18%) mutations
were in the regions encoding the phosphatase domain (corresponding
to aa15-aa185, [46]) of the PTEN protein, 23 (52%) in the C2
domain (aa185-aa351), and 12 (27%) in the C-terminal tail (aa351-
aa403) (Figure 5, A–C). No correlation between PTEN mutation
and PTEN deletion or PTEN protein expression was observed,
although the expression levels of PTEN with C2 domain mutations
were slightly increased (P = .38, Figure 5D).

A distinct GEP signature was identified for PTEN mutations
(FDR b 0.25, Figure 5E). Seven genes were down-regulated and
43 were up-regulated in the mutated-PTEN DLBCL subgroup
compared with the wild-type PTEN DLBCL subgroup (FDR b 0.05,
Table 4). Notably, PDCD6 which encodes programmed cell death 6,
a calcium-binding protein required for T-cell receptor-, Fas-, and
glucocorticoid-induced cell death and having inhibitory function
towards PI3K/AKT/mTOR signaling [47], was up-regulated in the
mutated-PTEN DLBCL group. Many genes related to neural
function (such as BOC, GLRA3, UNC5C, GPC4, GLRA3, and
NLGN3) and protein degradation (such as CUL7, RNF7, USP46,
and HERC6) were also up-regulated in the mutated-PTEN DLBCL
group, whereas MYD88, which was recurrently mutated in primary
central nervous sytem (CNS) lymphoma [48], was downregulated.
We further compared mutated-PTEN DLBCL group with the wild-
type PTEN DLBCL group in the p-AKThigh DLBCL subset. In the
mutated PTEN subgroup, 43 genes were up-regulated whereas only



586 PTEN expression and deficiency in DLBCL Wang et al. Neoplasia Vol. 20, No. xx, 2018
IL6ST (interleukin 6 signal transducer, involved in STAT3
activation) was downregulated (Table 4). Up-regulated genes
included CNS-related genes (ADCY1 and ARHGEF10), genes
invovled in protein degradation, and PPP1R3E invovled in glycogen
metabolism.

Heterozygous or homozygous PTEN deletion (Figure 6A) was
only present in 44 (12.3%) of 359 patients in the training cohort,
including 27 (61.4%) patients with GCB-DLBCL and 17 (38.6%)
patients with ABC-DLBCL. Only two of these cases had
homozygous deletion. Figure 6B depicted the case distribution of
PTEN mutation and PTEN deletion in the training cohort.
PTEN deletion cases overlapped with approximately 17.7% of
Cyto-PTEN− DLBCL cases, and 14.6% of Nuc-PTEN− DLBCL
cases. Similar frequency of PTEN deletion (heterozygous or
homozygous) was observed in the validation cohort (10.1%, 25
of 248 patients, including 4 patients [1.6%] who had homozygous
deletion), which overlapped with approximately 13.6% of the
Cyto-PTEN − cases, and 15.9% of the Nuc-PTEN − cases
(Supplementary Figure S1C).

PTEN deletion was associated with lower mean levels of Cyto-
PTEN expression in both the training and validation cohorts (P =
.015 and P = .013, respectively; Figure 6C, and Supplementary
Figure S1D). Only a trend of decrease in Nuc-PTEN expression was
associated with PTEN deletion (P = .24) likely due to the low nuclear
PTEN expression and small number of positive cases. Among cases
with PTEN deletion, Cyto-PTEN+ expression status was associated
with trend of better OS in the training cohort (P = .065, Figure 6C),
and significant better OS in the combined training and validation
cohort (P = .031). Conversely, among Cyto-PTEN+ cases, PTEN
deletion was associated significantly better OS (P = .02 in the training
cohort and P = .006 in the combined cohort), despite the association
with decreased Cyto-PTEN expression (P = .008 in the combined
cohort).

The clinical features of patients with and without PTEN deletion/
mutation in the training cohort are shown in Supplementary Tables
S2 and S3. PTEN deletion was associated with age b60 years (P =
.024) in ABC-DLBCL. PTEN mutation tended to be associated with
age ≥60 years (P = .078) in GCB-DLBCL and elevated LDH levels (P
= .051) in ABC-DLBCL. Different from PTEN− expression status,
PTEN deletion/mutation was not associated with decreased p-AKT,
PI3K, survivin, Myc, p-STAT3, p21, or PD-L1 expression. However,
PTEN deletion was associated with lower mean levels of MDM2 and
BLIMP-1 expression (P = .01 and .027, respectively). We have shown
previously that BLIMP-1 expression was associated with the ABC
subtype [40].

Similarly with the prognostic effects associated with PTEN protein
loss, PTEN deletion and PTEN mutation were associated with trends
towards poorer survival in p-AKThigh DLBCL despite the small case
numbers (Figure 6D), although not in overall DLBCL (data not
shown). The effect of PTEN deletion was stronger in the GCB
compared with the ABC subtype. Moreover, multivariate analysis
adjusting for clinical factors showed that both PTEN mutation and
deletion were independent prognostic factors for poorer OS and PFS
in p-AKThigh DLBCL (Table 3).

Opposite to this observation in p-AKThigh DLBCL, in MYC-
rearranged DLBCL cases, seven cases had PTEN deletion (heterozy-
gous or homozygous) and significantly better survival (in the training
cohort, P = .033 for OS and P = .064 for PFS; in the combined
traning and validation cohorts, P = .0097 for OS and P = .025 for
PFS; Figure 6E). Similar favorable effect of PTEN deletion was also
shown in GCB-DLBCL with BCL2 rearrangement (P = .08 for OS in
the training cohort and P = .048 for OS in the combined cohorts).
Conversely, among DLBCL cases harboring PTEN deletion, MYC
rearrangement was associated with trend of better OS (P = .096 in the
training cohort, P = .06 in the combined training and validation
cohort; Figure 6F). However, multivariate analysis indicated that
PTEN deletion was not a prognostic factor independent of clinical
factors in MYC-rearranged patients. The better survival may be
attributable to the decreased Myc protein expression in these MYC-
rearranged cases harboring PTEN deletion (P = .02 in the training
cohort); we have shown previously that MYC-rearranged DLBCL
cases without Myc overexpression had superior survival [36]. In
addition, PTEN expression was positive in five of seven MYC-
rearranged cases with PTEN deletion. Among cases with PTEN
deletion, MYC rearrangement was associated with increased
cytoplasmic PTEN expression (P = .01, Figure 6G), which is similar
to the association of Myc overexpression with cytoplasmic PTEN
expression (P = .0022, figure not shown).

Both Transcriptional and Post-transcriptional Mechanisms are
Involved in Nuclear and Cytoplasmic PTEN Expression
Regulation

The above data showed that PTEN genetic lesions only
contributed to a small proportion of DLBCL with PTEN deficiency.
We further correlated PTEN expression to biologic data from our
previous studies [32,33,38] and found that loss of PTEN expression
was associated with TP53 mutation and IgA/IgG positive immuno-
phenotypes (Table 1, Supplementary Table S1). Notably, previous
studies have shown that wild-type but not mutated p53 transactivates
PTEN [49,50].

At the transcription level, we found that Nuc-PTEN negativity was
associated with significantly lower PTEN mRNA expression (P =
.0054), more signficant in GCB-DLBCL (P = 0.0092) than in ABC-
DLBCL (P = 0.081). Comparably, the association between PTEN
downregulation and Cyto-PTEN− status was not significant (P =
0.065), with a stronger trend in ABC-DLBCL (P = 0.087) than in
GCB-DLBCL (P = 0.36).

The lack of significant association of Cyto-PTEN expression with
PTEN mRNA expression may suggest the important role of
posttranscriptional regulation in Cyto-PTEN expression. We further
extracted PTEN-targeting miRNA from miRNA profiling data and
found that Cyto-PTEN− status was associated with significantly
higher expression of several PTEN-targeting miRNAs, including
miR-106b-3p, miR-200c-5p, miR-486-5p, miR-141-5p, and miR-
130b-5p (Figure 7, A and B). When further analyzed in GCB/ABC
subtypes, Cyto-PTEN negativity was associated with higher miR-
486, miR-130b, and miR-106b expression in GCB-DLBCL, and
with higher miR-200c and miR-222 in ABC-DLBCL. In compar-
ison, loss of Nuc-PTEN expression did not show correlations with
expression of most PTEN-targeting miRNAs except for higher miR-
106b-3p expression (P = .042, figure not shown). Interestingly,
absence of PD-L1 expression was also associated with significantly
higher levels of miR-106b-3p (P = .0088, Figure 7C) and miR-130b-
5p (P = .036, figure not shown) expression. These data may suggest
that posttranscriptional regulation including miRNA-mediated
epigenetic mechanism played a significant role in regulating
cytoplasmic PTEN expression, whereas nuclear PTEN expression
was mainly regulated at the transcription level in GCB-DLBCL.
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Striking Prognostic Effect and Gene Expression Signatures
Associated with Low PTEN mRNA Expression
PTENmRNA expression showed much greater prognostic effect than

PTEN protein expression. Low PTENmRNA levels (PTEN-mRNAlow)
was associated with significantly poorer OS and PFS in overall DLBCL
and GCB-DLBCL, ABC-DLBCL, p-AKTlow, and p-AKThigh subsets
with multiple cutoffs (Figure 7D, with a cutoff at 21st percentile).

Moreover, distinct GEP signatures were identified for low PTEN
mRNA expression, but not for Cyto- or Nuc-PTEN protein
negativity. In GCB-DLBCL, up to 11,556 transcripts were up- or
down-regulated in PTEN-mRNAlow patients compared with PTEN-
mRNAnot low patients with a FDR threshold of 0.01. In ABC-
DLBCL, 2,358 transcripts were differentially expressed between
PTEN-mRNAlow and PTEN-mRNAnot low groups (FDR b 0.01).
When use another cutoff at 50th percentile (median) for PTEN-
mRNAhigh, a greater number of significant transcripts were
differentially expressed between PTEN-mRNAhigh ABC-DLBCL
and other ABC-DLBCL patients (n = 10,361, FDRb0.01, data not
shown). The spectrum of PTEN-mRNAlow genes in ABC-DLBCL
was similar with that in GCB-DLBCL, and both showed
downregulation of genes involved in immune responses, B-cell
receptor (BCR) signaling, gene expression, and metabolism, such as
downregulation of HLA-DRB4, CD58, MS4A1/CD20, FCRL3,
CSE1L, RPL15, and HNRNPA1. Notably, GEP analysis for AKT
hyperactivation also demonstrated downregulation of many genes
involved in immune responses, microenvironment, and metabolism
in p-AKThigh GCB-DLBCL patients [34]. Two genes regulating
mRNA turnover (PABPC1 and IGF2BP3) were downregulated in
both GCB and ABC subtypes of PTEN-mRNAlow DLBCL,
including IGF2BP3 which protects mRNAs against miRNA-
mediated degradation [51]. PTEN-mRNAlow gene signatures in
GCB-DLBCL and in ABC-DLBCL with N2-fold and N1.74-fold
differences, respectively, are shown in Figure 7E and Table 4.

Discussion
In two large cohorts of DLBCL, PTEN expression was observed
mainly in the cytoplasmic compartments of the tumor cells (64–
75% of cases); PTEN expression in the nucleus was less frequent
and at lower levels. PTEN cytoplasmic expression was more
frequent and higher (by mean level) in the ABC compared with
GCB subtype. The frequency of loss of cytoplasmic PTEN
expression observed in this study (25–36%) is comparable to
those by other studies in DLBCL (31-37%) [28,30]. Complete loss
of both cytoplasmic and nuclear PTEN expression was observed in
Figure 6. PTEN deletion and PTEN mutation analysis in the DLBCL tr
PTEN deletion (right). Red signals: centromere 10; green signals: PT
DLBCL and ABC-DLBCL cases, and their correlations with PTEN
represents one patient; cases with PTEN deletion, mutation, PTEN
colors; cases without indicated abnormalities are shown in light blue o
mean level of cytoplasmic PTEN expression was significantly lower in
gene deletion. Among patients with heterozygous or homozygous PT
of better overall survival rate (OS) in the training cohort. Among patie
associated with significantly better OS. (D) PTEN deletion/mutation
rates in DLBCL cases with p-AKT overexpression. (E) In combined t
significantly better OS in DLBCL cases withMYC gene rearrangemen
was associated with better OS with borderline significance. (G) In M
associated with a significantly lower mean level of Myc expression
associated with a significantly higher mean level of PTEN cytoplasm
27% of the training cohort and 11% of the validation cohort, which
was comparable to the frequency of complete loss of PTEN
expression reported in melanoma (25%) [25], and lower than those
in some solid tumors, such as hepatocellular (57%), prostate (52%),
colorectal (48%) [25], glioblastoma (53%) [52], and triple-negative
breast cancer (48%) [19]. Loss of cytoplasmic and/or nuclear PTEN
expression was associated with poorer clinical outcomes only in
DLBCL with high p-AKT (Ser473) nuclear expression, which were
mainly manifested in the GCB subtype by univariate survival
analysis but were retained only in the ABC subtype by multivariate
analysis adjusting for clinical parameters. In contrast, in patients
without abnormal AKT activities, high cytoplasmic PTEN
expression was associated with poorer survival, which is also only
significant in the GCB subtype.

These findings may explain the inconsistent prognostic results in
DLBCL by previous studies, and strongly suggest that the tumor-
suppressor function of PTEN is limited to the negative regulation of
the AKT signaling pathway. Supportingly, recent studies demon-
strated that the dependence of GCB-DLBCL on surface BCR density
and signaling is only in the presence of PTEN [53], and that most
AKT inhibitor-sensitive DLBCL models did not express PTEN and
were of GCB subtype; in contrast, PI3K inhibitor is selectively
effective in ABC-DLBCL through NF-κB inhibition [54]. These
findings are consistent with that PTEN inhibits BCR-induced AKT
activation in DLBCL [55,56], and intracellular PTEN levels
determine whether BCR signaling promotes cell death or cell survival
via differential regulation of PI3K/AKT and NF-κB pathways [57];
loss of the PTEN gene was preferentially detected in GCB-DLBCL,
and loss of PTEN expression defined a PI3K/AKT-dependent GCB-
DLBCL [26,27,54]. On the other hand, studies also showed that
besides the well-known inhibition of PI3K/AKT via lipid phosphatase
activity, PTEN has many other functions including those in the
nucleus [8,58–60], negative regulation of central B-cell tolerance
checkpoints [61], and roles in B-cell homeostasis in the immune
system [62]. Paradoxically, PTEN is required for both initiation and
maintenance of pre-B acute lymphoblastic leukemia cells, and loss of
PTEN causes rapid cell death of transformed pre-B leukemia cells
[61]. Such multi-directional functions of PTEN may explain the
opposite prognostic effects of PTEN expression in AKT-hyperactive
DLBCL and p-AKT− DLBCL cases, the lack of synergy between
PTEN deletion and MYC rearrangement, and lack of distinct GEP
signatures for PTEN expression and PTEN deletion.

As we have discussed in the previous review [43], loss/deficiency of
PTEN expression can be attributed to genetic alterations and
aining cohort. (A) Representative FISH results for normal (left) and
EN gene. (B) Distribution of PTEN deletions and mutations in GCB-
expression deficiency and p-AKT overexpression. Each column
loss, and p-AKT overexpression are highlighted in corresponding
r white color (for negative or unknown status, respectively). (C) The
patients with PTEN gene deletion than that in patients without PTEN
EN deletion, patients with cytoplasmic PTEN expression had trend
nts with positive PTEN cytoplasmic expression, PTEN deletion was
showed trends towards decreased progression-free survival (PFS)
raining and validation cohort, PTEN deletion was associated with
t. (F) In DLBCL cases with PTEN deletion,MYC gene rearrangement
YC rearranged DLBCL cases (training cohort), PTEN deletion was
. In DLBCL cases with PTEN deletion, MYC rearrangement was
ic expression.



Figure 7. miRNA profiling and gene expression profiling analysis in the training cohort. (A-B) Loss of cytoplasmic PTEN expression was
associated with significantly higher levels of miR-106b-3p, miR-200c-5p, miR-486-5p, miR-141-5p, and miR-130b-5p expression in DLBCL.
(C) Absence of PD-L1 expression was associated with significantly higher miR-106b-3p expression. (D) Low PTENmRNA expression was
associated with significantly worse progression-free survival (PFS) in GCB-DLBCL, ABC-DLBCL, and the p-AKThigh DLBCL subset. (E)
Genes significantly differently expressed between DLBCL groups with low PTEN mRNA expression and other cases (designated as
PTEN low and PTENnot low, respectively), and between DLBCL patients with wild-type PTEN (WT-PTEN) and mutated PTEN (MUT-PTEN).
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transcriptional, translational, and post-translational dysregulations.
PTEN deletion (mostly heterozygous) and mutation as genetic
mechanisms for PTEN deficiency and inactivation were observed in
only approximately 11.3% and 10.6% of DLBCLs, respectively.
These frequencies of PTEN gene alterations are much lower than
those in some solid tumors (homozygous deletion, up to 42.5%;
mutation, up to 44%) [20,21,63], which is consistent with previous
studies in DLBCL and high-grade non-Hodgkin lymphoma [31,64].
Distinct GEP signatures were identified for low PTEN mRNA
expression and PTEN mutations, which suggest that BCR signaling

Image of Figure 7
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and B cell differentiation regulate PTEN expression at the
transcription level, and that PTEN is involved in CNS and immune
response regulation in addition to its function in AKT/mTOR
signaling. It has been reported that PTEN loss was associated with
brain metastasis in melanoma patients [16].

We further explored the biological correlations and regulation
mechanisms of PTEN expression. We surprisingly found that p-AKT
(Ser473) nuclear expression and PTEN cytoplasmic expression were
positively correlated in both training and validation cohorts, although
no correlations were found between PTEN protein expression and
AKT1 mRNA, nor between p-AKT protein expression and PTEN
mRNA. As this was opposite to what one would expect (PTEN loss
should correlate with increased p-AKT expression), we stained a
separate set of FFPE tissue samples for the entire DLBCL training and
validation cohorts using another PTEN monoclonal antibody from
DAKO (clone 6H2.1). However, again we found that PTEN
positivity and high expression were associated with p-AKT expression
in DLBCL samples (data not shown). Such surprising positive
(instead of negative) correlation between AKT and PTEN expression
was also found in breast cancer, melanomas, and urinary bladder
cancer by other studies [65–67]. Although paradoxical at the first
glance, these results may reflect the complex regulation network of
PI3K/AKT/PTEN with divergent activating and inactivating [68]
mechanisms as demonstrated by previous studies [54]. It is known
that phosphorylation at the Ser473 residue of AKT is mainly regulated
by mTORC2 [69,70]; AKT activation in GCB-DLBCL is the
principal consequence of tonic BCR signaling but AKT activation
must not depend soly on the BCR signaling [53]. Notably, our results
[34] showed that p-AKT (Ser473) expression was primarily associated
with Myc and Bcl-2 expression (targets of mTORC2 and BCR
signaling) in GCB-DLBCL (P b 0.0001), and with IL-6 expression in
ABC-DLBCL (P = 0.0005), whereas the association with PI3K was
rather weak (P = 0.019 in the overall DLBCL cohort only). It is
possible that the inhibitory effect of PTEN on AKT activation did not
dominate the divergent mechanisms activating p-AKT (Ser473)
expression among DLBCL cases; these divergent mechanisms may
also indirectly up-regulate PTEN expression, since PTEN mRNA
expression showed correlation with BCR signaling gene signatures,
and Cyto-PTEN expression was associated with the ABC subtype,
whereas loss of PTEN was associated with IgA/IgG expression.
However, as cytoplasmic PTEN expression was associated with
significantly decreased survivin expression (an indicator of AKT
function in antiapoptosis) in ABC-DLBCL (Figure 1E), and we did
not examine the p-AKT (Thr308) expression, PTEN may still have a
significant role in repressing AKT function in DLBCL.

Moreover, the complexity between PTEN stability and function by
posttranslational modifications may also contributes to the positive
correlation between p-AKT and PTEN IHC results. Earlier studies
indicated that phosphorylation of the PTEN’s C-terminal tail causes a
conformation change that stabilizes PTEN but at the same time
inhibits its phosphatase activity and binding to the plasma membrane
[9]; PD-1 inhibits this stabilizing/inactivating phosphorylation [71].
Since the antibody we used detected total PTEN, it is possible that
the observed PTEN positivity also included stabilized phosphorylated
PTEN (which has no tumor suppressor function), and PTEN
expression levels were not linearly correlated with PTEN function;
common mechanisms for the phosphorylation modification of PTEN
and AKT could exists. Notably, although PTEN mRNA expression
showed significantly favorable prognostic effect and striking GEP
signatures, such effect and distinct GEP signatures were lacking for
PTEN protein expression in overall DLBCL. Therefore, the effect
and interpretation based on PTEN mRNA expression in DLBCL by
previous studies may deserve precaution.

In our DLBCL cohort, p-AKT expression was significantly
associated with both PTEN and Myc expression; accordingly, Myc
expression also showed positive association with Cyto-PTEN
expression. MYC rearrangement and PTEN deletion showed
antagonistic rather than synergistic prognostic effect, but the case
number was small. Whether the antagonistic effect resulted from
MYC/PTEN gene structures is unknown; comparably lower Myc
expression and increased PTEN expression in these cases with
concurrentMYC/PTEN abnormalities (Figure 6G) could be relevant.
Notably, earlier functional studies demonstrated that Myc transcrip-
tionally activates PTEN expression [72]; on the other hand, Myc
negatively regulates PTEN expression posttranscriptionally through
miRNAs [73,74]. Conversely, PTEN represses Myc expression by
inhibiting PI3K/AKT signaling and transcriptional modulation
[27,75]; scenario that PTEN deletion did not cooperate with Myc
activation in tumorigenesis was also reported [76]. Again, these
findings suggested the complexity of PTEN-involved molecular
network.

In this study, loss of cytoplasmic PTEN expression was also
associated with TP53 mutations and increased miRNA expression.
Among the PTEN-targeting miRNAs showing negative correlations
with Cyto-PTEN expression, miR-106b, miR-222, miR-200c, and
miR-130b have been associated with poor prognosis [77–80].
Targeting these overexpressing miRNAs could be a feasible strategy
to increase PTEN expression in DLBCL.

Interestingly, we found that loss of Cyto-PTEN expression was
associated with a lower mean level of PD-L1 expression in
DLBCL, whereas PTEN deletion/mutation and expression of p-
AKT, PI3K, or Nuc-PTEN had no association with PD-L1
expression. There was no correlation between PTEN and PD-L1
(CD274) mRNA expression. These data did not support the
finding in vitro that loss of PTEN function was associated with
increased PD-L1 expression [81]. However, in vivo studies found
that PTEN loss through PTEN deletion and mutation did not
increase PD-L1 expression in several mouse models. Because our
data showed that both PD-L1 and Cyto-PTEN expression were
associated with the ABC subtype and decreased miR-106b-3p and
miR-130b-5p expression, which have been shown to target PD-L1
expression in cancer cells [82,83], and PTEN-targeting miR-200c
[73] is a key regulators of PD-L1 expression in acute myeloid
leukemia [84], we speculated that common regulators of PD-L1
surface expression and PTEN cytoplasmic expression possibly
underlie the positive correlation between Cyto-PTEN and
membrane PD-L1 expression in this DLBCL cohort. Further-
more, because PD-L1 expression was often associated with greater
likelihood of response to PD-1 blockade [85], our results may
suggest that Cyto-PTEN− DLBCL cases with lower PD-L1
expression would be less likely to respond to PD-1 blockade,
which is consistent with the observation that PTEN loss was
associated with inferior outcomes in patients with metastatic
melanoma who received PD-1 inhibitor therapy [86].

Conclusions
In summary, the prognostic significance of PTEN loss and
high expression in de novo DLBCL treated with R-CHOP
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depends on AKT activities. PTEN deletion and mutation may have
limited significance for poorer clinical outcome in DLBCL. PTEN
protein and PTEN mRNA expression showed totally different
prognostic effects and gene signatures in DLBCL. Our data suggest
that the PI3K/PTEN/AKT and Myc signaling pathways are
divergent rather than linear. Epigenetic and posttranslational
mechanisms may play important roles in PTEN and PD-L1
expression.
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