112 research outputs found

    Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    Full text link
    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator-prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J. Math. Biol., in pres

    Pathological response and tumour bed histopathological features correlate with survival following neoadjuvant immunotherapy in stage III melanoma

    Get PDF
    Background: Guidelines for pathological evaluation of neoadjuvant specimens and pathological response categories have been developed by the International Neoadjuvant Melanoma Consortium (INMC). As part of the Optimal Neo-adjuvant Combination Scheme of Ipilimumab and Nivolumab (OpACIN-neo) clinical trial of neoadjuvant combination anti-programmed cell death protein 1/anti-cytotoxic T-Iymphocyte-associated protein 4 immunotherapy for stage III melanoma, we sought to determine interobserver reproducibility of INMC histopathological assessment principles, identify specific tumour bed histopathological features of immunotherapeutic response that correlated with recurrence and relapse-free survival (RFS) and evaluate proposed INMC pathological response categories for predicting recurrence and RFS.Patients and methods: Clinicopathological characteristics of lymph node dissection specimens of 83 patients enrolled in the OpACIN-neo clinical trial were evaluated. Two methods of assessing histological features of immunotherapeutic response were evaluated: the previously described immune-related pathologic response (irPR) score and our novel immunotherapeutic response score (ITRS). For a subset of cases (n = 29), cellular composition of the tumour bed was analysed by flow cytometry.Results: There was strong interobserver reproducibility in assessment of pathological response (kappa = 0.879) and percentage residual viable melanoma (intraclass correlation coefficient = 0.965). The immunotherapeutic response subtype with high fibrosis had the strongest association with lack of recurrence (P = 0.008) and prolonged RFS (P = 0.019). Amongst patients with criteria for pathological non-response (pNR, >50% viable tumour), all who recurred had >= 70% viable melanoma. Higher ITRS and irPR scores correlated with lack of recurrence in the entire cohort (P = 0.002 and P = 70% viable melanoma and incorporating additional criteria of <10% fibrosis subtype of response may identify those at highest risk of recurrence, but requires validation.Analysis and support of clinical decision makin

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore