18 research outputs found

    Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort

    Get PDF
    Background: Although growth advantage of certain clones would ultimately translate into a clinically visible disease progression, radiological imaging does not reflect clonal evolution at molecular level. Circulating tumor DNA (ctDNA), validated as a tool for mutation detection in lung cancer, could reflect dynamic molecular changes. We evaluated the utility of ctDNA as a predictive and a prognostic marker in disease monitoring of advanced non-small cell lung cancer (NSCLC) patients.Methods: This is a multicenter prospective cohort study. We performed capture-based ultra-deep sequencing on longitudinal plasma samples utilizing a panel consisting of 168 NSCLC-related genes on 949 advanced NSCLC patients with driver mutations to monitor treatment responses and disease progression. The correlations between ctDNA and progression-free survival (PFS)/overall survival (OS) were performed on 248 patients undergoing various treatments with the minimum of 2 ctDNA tests.Results: The results of this study revealed that higher ctDNA abundance (P=0.012) and mutation count (P=8.5x10(-4)) at baseline are associated with shorter OS. We also found that patients with ctDNA clearance, not just driver mutation clearance, at any point during the course of treatment were associated with longer PFS (P=2.2x10(-1)6, HR 0.28) and OS (P=4.5x10(-6), HR 0.19) regardless of type of treatment and evaluation schedule.Conclusions: This prospective real-world study shows that ctDNA clearance during treatment may serve as predictive and prognostic marker across a wide spectrum of treatment regimens

    Involvement of histone acetylation of Sox17 and Foxa2 promoters during mouse definitive endoderm differentiation revealed by microRNA profiling

    Get PDF
    Generation of hepatocyte from embryonic stem cells (ESCs) holds great promise for hepatocyte replacement therapy to treat liver diseases. Achieving high efficiency of directed differentiation of ESCs to hepatocyte is of critical importance. Previously, Wnt3a has been reported to promote Activin A-induced human definitive endoderm (DE) differentiation, the early stage of hepatocyte differentiation. However, the underlying molecular mechanisms are not clear. Growing evidence demonstrated that microRNAs (miRNAs) are key regulators involved in various important biological processes including the regulation of stem cell differentiation. In the present study, we profiled genome wide miRNA expression during Wnt3a and Activin A induced mouse DE differentiation. We uncovered distinct miRNA expression patterns during DE differentiation with the identification of a subset of miRNAs whose expression is synergistically regulated by Wnt3a/Activin A treatment at different stages of DE differentiation. Forced expression of a pool of such synergistically regulated miRNAs alone could partially promote DE differentiation, indicating a regulatory role of them. Using TargetScan and GeneGO pathway analyses, the synergistically regulated miRNAs are predicted to regulate key pathways involved in DE differentiation; among them includes the regulation of histone acetylation. Consistently, Wnt3a and Activin A treatment increased global histone acetylation which can be partially mimicked by over expression of the pooled miRNAs. Chromatin IP (ChIP) experiments demonstrated that the promoter regions of Sox17 and Foxa2 are subjected to histone acetylation regulation. Administration of Hdac inhibitors greatly augmented DE differentiation. Our data uncovered a novel epigenetic mechanism of Wnt3a and Activin A induced DE differentiation, whereby the treatment of growth factors induced histone acetylation at least in part by the regulation of miRNA expression

    bITH, a blood-based metric of intratumor heterogeneity, is associated with clinical response to immune checkpoint blockade in non-small cell lung cancerResearch in context

    No full text
    Summary: Background: Intratumor heterogeneity (ITH) has been associated with poor prognosis in advanced non-small cell cancer (NSCLC) patients receiving immune checkpoint blockade (ICB) therapies. However, there is currently no evidence supporting an ITH metric as a predictor of clinical benefit from ICB. The unique advantages of blood make it a promising material for ITH estimation and relevant applications. This study aims to develop and validate a blood-based ITH index for predicting ICB response. Methods: NSCLC patients from the OAK and POPLAR clinical trials were used as the training cohorts for algorithm development. Survival analyses with overall survival (OS) and progression-free survival (PFS) as endpoints were performed to assess clinical response. The predictive value of bITH was subsequently validated with an independent cohort of 42 NSCLC patients treated with PD-1 blockade. Findings: bITH was significantly associated with the differential OS and PFS elicited by atezolizumab vs. docetaxel in both univariable and multivariable analyses in the OAK patients, suggesting bITH as an independent predictor for response to ICB. Moreover, compared with blood tumor mutation burden (bTMB), bITH enabled greater OS segregation and comparable PFS segregation, and obtained a predictive role regardless of bTMB status. Moreover, the association between bITH and PFS was validated with an independent cohort. Interpretation: Patients with low blood-based ITH metric manifest significant OS and PFS benefit from immunotherapy versus chemotherapy. Future research is awaited to corroborate our findings and to enrich the clinical utility of ITH. Funding: This study was supported by the National Natural Science Foundation of China (Nos. 81972718 and 81572321), the Natural Scientific Foundation of Zhejiang Province, China (No. LY19H160007), the Science and Technology Program for Health and Medicine in Zhejiang Province, China (No. 2021KY541), the Scientific Research Project, Science and Technology Department of Sichuan Province (No. 21YYJC1616), the Scientific Research Project, Sichuan Medical Association (No. S20002), Wu Jieping Medical Foundation (No. 320.6750), and 2018 Entrepreneurial Leading Talent of Guangzhou Huangpu District and Guangzhou Development District (No. 2022-L023)

    The PHD domain targets NSD2 to oncogenic gene loci and drives tumorigenesis in multiple myeloma cells

    No full text
    NSD2, a histone lysine methyltransferase, is overexpressed as a result of the t(4;14) translocation that is associated with 15-20% of multiple myeloma patients. Earlier studies have indicated that NSD2 may be involved in myelomagenesis and suggested that it may be a target for myeloma therapy. Here we show that depletion of NSD2 has only minor influence on the proliferation of t(4;14)+ myeloma cells. However, we found that NSD2 is required for clonogenic growth, adherence and proliferation on bone marrow stroma, and tumorigenesis of t(4;14)+ but not t(4;14)- myeloma cells, in a methyltransferase activity dependent manner. Furthermore, we found that PHD domains are important for NSD2 cellular activity and biological functions in myeloma by recruiting it to oncogenic gene loci and driving downstream transcription activation events. These results strengthened the disease link of NSD2 and provided a basis that targeting the methyltransferase activity of NSD2 may be a therapeutic strategy in multiple myeloma patients with t(4;14) translocation. Our data also revealed multiple domains in the protein for possible chemical modulation

    Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation

    No full text
    Ezh2 protein is the enzymatic component of the Polycomb Repressive Complex (PRC)-2, which represses its target genes by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation and differentiation during embryonic development. Recently, hot-spot mutations of Ezh2 have been identified in diffused large B cell lymphomas (DLBCLs) and follicular lymphomas (FLs). To investigate if tumor growth is dependent on the enzymatic activity of Ezh2, we have developed a potent and selective small molecule inhibitor, JAD593, which inhibits the enzymatic activity of Ezh2 through direct binding and competing with the methyl group donor S-Adenosyl methionine (SAM). JAD593-treated cells exhibit genome-wide loss of H3K27 methylation. Furthermore, inhibition of Ezh2 by JAD593 in DLBCL cells carrying the Y641 mutations results in decreased proliferation, cell cycle arrest and apoptosis. These results provide strong validation of Ezh2 as a potential therapeutic target for the treatment of cancer with the Ezh2 mutation
    corecore